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Abstract. Helical distributions of stokeslets can valuably model microbial locomotion through a fluid, and also 
the flow field generated, wherever a flagellum actively executes helical undulations (as in many single-celled algae 
and protozoa) or where (as in many bacteria) the action of rotary motors causes a passive structure of helical shape 
(which may be a flagellum or else the cell body itself) to rotate. Here, previous biomechanical studies of such 
modes of locomotion are extended to include analyses of three-dimensional flow fields. In some cases, a rotlet field 
(curl of a stokestet) needs to be incorporated in the models. For example, spirochete swimming is modelled by 
combined helical distributions of stokeslets and rotlets; the computed flow field being confined to within distances 
of less than twice the radius of the cell body's helical shape from its axis, while including a powerful jet-like 
interior flow through the coils of the swimming spirochete. 

1. Introduction 

A helix is a three-dimensional shape invariant under screw-like combinations of a rotation 
about its axis and a proportional translation along its axis. A helical distribution of stokeslets, 
having strengths that are similarly invariant, yields a three-dimensional flow field whose 
distribution in any plane perpendicular to the axis is repeated in every parallel plane after such 
rotation and translation. The interesting characteristics of that flow field are the subject of this 
paper. 

Microbiology offers many compelling motivations - as expounded in my 1975 John 
von Neumann Lecture [1] - for investigating helical distributions of stokeslets. However, a 
study aimed at microbiological applications can become excessively concentrated on overall 
characteristics of clear importance to microbiology such as energy dissipation rate, torque and 
swimming speed and their relationships to the geometry and kinematics of the helix. Those 
relationships, which I comprehensively probed in [1 ], are here complemented (Section 2) with 
a detailed look at the flow field as a whole - after which the paper is continued with outlines 
of the relevance of these investigations to the locomotion of eukaryotic microorganisms (algae 
and protozoa; see Section 3) and of bacteria (Section 4), and concluded with a particularly 
interesting application to the flow field around a spirochete (Section 5). First of all, however, 
some preliminary microbiological background may perhaps be given very briefly. 

The flagellum in a eukaryotic microorganism is a complicated structure capable (Section 3) 
of generating patterns of bending movements through active sliding of internal tubules relative 
to one another. These sliding processes are somewhat similar to those involved in the relative 
motions of adjacent muscle fibrils, and are powered like them by the dephosphorylation 
of adenosine triphosphate (ATP). In every flagellum the active element, called axoneme, 
possesses an essentially identical "9 + 2" structure, comprising 9 "doublet" tubules arranged 
in a circle of diameter 0.2 ima around 2 central tubules. A flagellar membrane surrounds the 
axoneme; while, in certain species, surrounding additionally an "intraflagellar rod". 
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Among different single-celled organisms that use such a flagellum (or sometimes two 
flagella) for propulsive purposes, a diverse range of patterns of bends are so generated in 
the flagella [1]. Rather prominent among these is the undular pattern, in which a wave is 
propagated either from the flagellum's base (where it is attached to the cell body) to its tip, 
or else from tip to base. Waves of both planar and helical forms are found; here, before 
concentrating on the latter, I offer first a brief overview of planar waves. 

It was G.I. Taylor [2-4] who first highlighted the key property of planar wave propagation 
for flagellar hydrodynamics. This is concerned with movements of any short stretch S of the 
flagellum relative to the cell body. He pointed out that, although 

(i) the average of those movements is zero, nevertheless 
(ii) movements of S normal to itself have positive components in the direction of propagation 

- implying that 
(iii) movements tangential to S have, on the average, equal and opposite negative components. 

Taylor showed moreover that movements of S normal to itself exert on the fluid a greater 
force per unit velocity of movement than do tangential movements; therefore, by (ii) and (iii) 
above, propagation of a wave along the flagellum exerts always a net force on the fluid in 
the direction of propagation. The reaction of the fluid on the flagellum is then a thrust in a 
direction opposite to that of the wave propagation; therefore, the whole organism proceeds in 
this direction at such a speed that its drag balances that thrust. (For a careful discussion of how 
the force-coefficient approach pioneered by Taylor is related to approaches using stokeslet 
distributions, see Section 2.3 of my survey [1].) 

All these remarks apply to flagella with their active element (the axoneme) surrounded by 
a smooth flagellar membrane. The soundness of the argument is demonstrated, on the other 
hand, by a group of microorganisms that exhibit diametrically opposite properties, owing to 
the presence on the membrane of stiff "hairs" known as mastigonemes which are arranged 
along opposite sides of the flagellum and project normally to it in the plane of its undulations. 
Taylor pointed out that these generate a large increase in the force per unit velocity exerted 
by tangential movements, raising its value above that for normal movements (which the 
presence of the mastigonemes hardly affects). Therefore, by (ii) and (iii) above, propagation 
of a wave exerts on the fluid a net force opposite to the direction of propagation; the balancing 
thrust, therefore, being in the direction of propagation. For example, the chrysophycean 
alga Ochromonas is pulled forwards by the base-to-tip undulation of a flagellum with such 
mastigonemes which stretches ahead of it; however, no further reference is here made to such 
organisms because flagella with mastigonemes are used in exclusively planar, rather than 
helical, undulations. 

The one obviously disadvantageous feature of planar undulations for propulsion by smooth 
flagella is that, although all the movements (ii) of a stretch S of flagellum normal to itself have 
positive - or, more strictly, nonnegative - components in the direction of propagation, those 
components are small wherever the flagellum is inclined to this direction at a small angle; 
while, moreover, they fall to zero twice per wavelength. At each instant, therefore, only part of 
the flagellar movement produces positive thrust even though the whole is generating viscous 
energy dissipation. Advantages from avoiding this evident source of reduction in propulsive 
efficiency may have influenced the evolution of helical undulation - even though (see below) 
it potentially exhibits a disadvantage of its own. 

An axoneme able to execute planar undulations is evidently fitted also for executing a 
helical undulation, which results (Section 2) from the combination of two planar undulations 
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in mutually orthogonal planes, with a phase difference of 90 o between them. From some points 
of view, moreover, a helical undulation is even simpler because it involves a straightforward 
rotation in the pattern of relative sliding movements between adjacent tubules (Section 3). 

From the hydrodynamic standpoint, too, a special simplification arises: every short stretch 
S of flagellum exhibits movements normal to itself with one and the same positive component 
(ii) in the direction of propagation, while simultaneously its movements tangential to S have 
equal and opposite negative components (iii). It means that all stretches of flagellum make 
the same positive contribution to thrust (with, again, all necessarily contributing to viscous 
energy dissipation), which seems at first sight to ensure maximum propulsive efficiency. 

Yet, potentially, there remains one serious disadvantage to propulsion by helical undulation. 
The forces with which all the different short stretches S of flagellum act on the fluid generate 
not only a resultant force in the direction of propagation but also a turning moment  or 
torque about that direction. Consequently the reaction of the fluid on the microorganism as 
a whole includes an opposing torque tending to rotate it at an angular velocity such that this 
turning moment  is itself cancelled by that couple which resists such rotation of the cell body 
and flagellum combined. Moreover, this turning movement or "corkscrew" rotation is such 
(Section 2) as to diminish those forces with which the flagellum acts on the fluid; so that 
the resulting swimming speed is reduced without any diminution of energy dissipation rate. 
Thus helical undulation, notwithstanding the potential gain in propulsive efficiency (from 
uniformity of thrust) over planar undulation, poses its own threat to propulsive efficiency 
(from the corkscrew rotation associated with that tuming moment). 

In my comprehensive survey of flagellar hydrodynamics [1] I interpreted the observed 
movements of many organisms with two flagella in terms of the idea that they have evolved 
so as to realise to the full the efficiency advantage of helical propulsion while avoiding its 
associated disadvantage. Several examples are described in section 3 below, ranging from 
cases where the disadvantage is diminished (by passive means, a subsidiary flagellum being 
used to increase resistance to turning of the organism) through cases where it may be nullified 
(when two flagella generate equal and opposite torques) to some remarkable cases where the 
potential disadvantage seems to have been transmuted into an actual advantage! 

Yet enough may already have been said here to motivate the study in Section 2 of a 
particular flow field - the one generated by a helical distribution of stokeslets - which can 
significantly add to our understanding of how helical undulations of flagella are used in the 
propulsion of eukaryotic microorganisms. Necessarily, such a flow field may in practice need 
to be used in a linear combination with other flow fields, as is always possible in flagellar 
hydrodynamics owing to the linearity of the equations which describe "Stokes flow" (flow 
at very low Reynolds number). Also, it is essential to use the basic theorem of flagellar 
hydrodynamics, as described in my earlier paper [5] within this special issue as well as in my 
John von Neumann Lecture [ 1 ], to relate the stokeslet distribution to the actual movements - 
including forward swimming movements - of the flagellum. 

Although the flow analysed in Section 2 is that associated with a helix extending indef- 
initely in both directions, it may be useful in practice for representing fluid motions in the 
neighbourhood of a finite flagellum making helical undulations. At the same time, two special 
features of this flow should be carefully noted: 

(a) the derived swimming speed Uo is that obtained from a balance of thrust against the 
flagellum's own drag, without any allowance for the additional drag of a cell body; while 

(b) the torque per unit length which is generated by the helical flagellum gives the fluid 
motion a vortical character far from the axis of the helix. 
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Feature (a) implies that no net thrust is exerted by the flagellum, allowing the swimming 
speed Uo to be designated [1] as the zero-thrust swimming speed. In the presence of a cell 
body, the swimming speed takes a reduced value U; therefore, relative to its zero-thrust 
movement, the flagellum is drifting backwards at a velocity Uo - U.  Thrust consists of the 
hydrodynamic resistance to that backward drift, and must be balanced against the drag on the 
cell body moving forward at velocity U. Accordingly, an additional fluid motion, generated 
by "drag" stokeslets on the cell-body surface opposed by "thrust" stokeslets distributed along 
the flagellum, needs [1] to be linearly combined with the fluid motion studied in Section 2. 

At the same time, feature (b) is itself not fully characteristic of fluid motions far from a real 
microorganism. As already indicated, various mechanisms act to ensure that the total torque 
on the whole organism is zero. The most obvious mechanism - rotation of a cell body at an 
angular velocity f~ determined by the torque applied and its own rotational damping constant 
- is, actually, allowed for in Section 2, along with the consequent "corkscrew rotation" which 
it generates. Evidently, at distances comparable with the flagellum's length, the flagellum's 
far-field vortical motion would be largely cancelled by the far field of motions generated by 
such cell-body rotation. Alternatively, where two flagella generate equal and opposite helical 
undulations, the vortical components cancel in the sum of their far fields. For other more 
complex mechanisms in eukaryotic organisms see Section 3. 

Next, some applications of helical distributions of stokeslets to problems of bacterial 
locomotion are sketched in Section 4. Although the same word "flagellum" is used, not 
only for the complex structures including actively motile axonemes which contribute to 
the locomotion of eukaryotic microorganisms, but also for those thin, essentially passive, 
filamentous structures that confer motility on some bacteria, the differences between them are 
enormous. The latter, with diameters around 0.02 larn (smaller by an order of magnitude), are 
driven by a sort of "rotary motor" situated between the outer cell wall and the cytoplasmic 
membrane. Although in many cases they have helical shapes, these operate in a simple 
"corkscrew rotation" mode. Both such cases, and some quite different cases where it is 
the cell body which is helical in shape - being given forward motion through some quite 
surprising movements of flagella - are described in Section 4 in the context of the general 
theory of helical distributions of stokeslets. Finally, a flow field of particular interest (that 
around a swimming spirochete) is given detailed analysis in Section 5, while Section 6 offers 
a general synopsis of conclusions. 

2. The three-dimensional flow field 

The propagation of a helical wave along the flagellum of a eukaryotic microorganism can be 
described [1] by equations 

II = b c o s [ k ( s  - ct)], z = b s i n [ k ( s  - ct)], z = a s  (1) 

in terms of the distance s measured along the flagellar centreline; where (for fixed t) 

dz 2 + dy 2 + dz 2 = d82, giving o~ 2 + b2k 2 = 1. (2) 

As remarked in Section 1, the helical wave (1) combines planar undulations in the y- and 
z-directions with phases differing by 90 ° . 

The wave travels along the curved centreline (1) at velocity c. However, the wave speed 
V along the z-axis (axis of the helix) is 

V = ac;  while A = 27r /k  and • = c~A (3) 
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are, respectively, the wavelength A measured along the centreline and the "pitch" ,k of the 
helix (wavelength measured along its axis). 

The three-dimensional flow field, which depends just on the instantaneous motion of the 
boundary, is here analysed at time t = 0, when the position and velocity of a point (1) on the 
centreline are 

( x , y , z )  = (as, bcosks,  bsinks) (4) 

and 

w = (5c, Y,/:) = (0, bkcsin ks, -bkccos  ks). (5) 

It is noteworthy that this centreline velocity w is identical with that produced by a simple 
"corkscrew rotation" 

w = ( -w ,  0, 0) x (x, y, z); where w = kc (6) 

is an effective angular velocity of rotation in the negative sense about the x-axis. 
On the other hand, any real undulatory movement (1) of a flagellum relative to a cell body 

may generate movements of the cell body itself. Such movements, of translation and rotation, 
have to be added on to the velocity (5) if motion of the flagellar centreline relative to the fluid 
is to be described. 

In particular, a wave propagation in the positive x-direction was seen in Section 1 to 
produce a translational movement in the opposite direction which may be written ( - U ,  0, 0) 
in terms of the swimming speed U. At the same time the flagellum's effective rotary movement 
(6) in the negative sense may be opposed by the fluid with a resistive torque in the positive 
sense, leading to rotation of the cell body with angular velocity (fl, 0, 0). (For some other 
processes that can influence the value of f~ in certain organisms, see Section 3.) 

The case here analysed, as explained in Section 1, is that of a helical flagellum which 
extends indefinitely in both the positive and negative x-directions. It moves at the "zero- 
thrust swimming speed"; namely, that speed U = U0 for which the thrust generated by the 
helical undulation (1) is balanced by the drag opposing movement of the flagellum itself - 
without any allowance for cell-body drag. Such a condition of zero net thrust permits the 
three-dimensional flow field to be well defined even around a flagellum of infinite extent (for 
considerations which determine the value U < U0 of swimming speed when cell-body drag 
is taken into account, see Section 1). There is however no difficulty in allowing for rotation of 
the organism as a whole with angular velocity f2, which reduces the effective angular velocity 
of the flagellar centreline from its value w = kc as in (6) to a value 

WE = w -- f2. (7) 

In that case the centreline velocity w is modified from its value (5) to a new value 

w = (-Uo,  wEbsin ks, -wEbcos  ks), (8) 

which takes into account translation at velocity ( -U0,  0, 0) and rotation with angular velocity 
(f~,0,0). 

A helical distribution of stokeslets of strength f(s) ,  representing the force with which unit 
length of flagellum acts on the fluid, is found [ 1] to be compatible with the zero-thrust motion 
(8) if f(s)  takes a form 

f(s)  = (0, h sin ks, - h c o s  ks) (9) 
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of similar appearance but with zero x-component; in other words, with no net thrust. The 
force per unit length (9), when applied at the position (4), generates, however, a net torque 
( -bh )  about the x-axis, equal to the x-component of 

(as, bcosks, bsinks) x (0, hsinks, -hcosks) ,  (10) 

per unit length; and it is an equal and opposite reaction of the fluid on unit length of flagellum 
- namely an opposing couple (+bh, 0, 0) - which may act to determine the organism's rotary 
movement with angular velocity f2. 

It should also be noted that the rate of working per unit length of flagellum is 

E = wEbh. (11) 

This value - the scalar product of the vectors (8) and (9) - can be interpreted as the work 
being done to rotate the flagellum at the effective angular velocity WE against that opposing 
couple. 

I turn now to the three-dimensional flow field generated by a helical distribution of 
stokeslets of strength f(s)  per unit length. At any field point this takes the form 

f_~r2of(s) + [f(s) • rolrOds, 
u = oo 87r#r03 (12) 

where the vector r0 with magnitude r0 represents displacement of that field point from the 
stokeslet location (4). The integral (12), with f(s)  given by (9), converges for all field points 
except those on the flagellar centreline (where convergence fails because r0 can become 
zero). 

The exception was already fully treated in [1] by use of the basic theorem of flagellar 
hydrodynamics [5]. This states that, at each point s = so on the centreline, the surface of the 
flagellar cross-section moves at a velocity w(s0) given as the sum of 

(a) the integral (12) with the small interval r0 < 5 excluded (here, 6 = 0.5el/2a = 0.824a 
in terms of the flagellar radius a); and 

(b) a term proportional to the component fn(s0) of f(s0) in a plane normal to the centreline. 
That treatment, which determined the relationships between the functions w(s)  and f(s)  given 
by Eqs. (8) and (9), led to comprehensive data on values of swimming speed, torque and rate of 
working for given values of a, b, c and k. Here, on the other hand, postponing further reference 
to exceptional positions of the field point, I analyse "in general" the three-dimensional flow 
field. 

As remarked at the beginning of Section 1, it suffices to determine this in just the plane 
x = 0, intersected by the helix (4) at the point 

(x,y,z) = (0, b,0). (13) 

Indeed, because the helix (4) and the stokeslet distribution (9) are both invariant under a shift 
of the origin of s to s = so, along with a translation of the coordinate axes through a distance 
as0 in the x-direction and a rotation through an angle kso about it, the three-dimensional flow 
field in the plane x = aso can be obtained from the flow field in the plane x = 0 by a simple 
rotation through an angle kso. 

At a general point 

y = R c o s ¢ ,  z = R s i n ¢  (14) 
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in the plane x = 0 (where the exceptional point (13) is excluded by avoiding the combination 
of values R = b, ¢ = 0) the vector separation r0 from the stokeslet location (4) takes the 

form 

r0 = ( - a s ,  R c o s ¢ -  bcosks, R s i n ¢ -  bsinks), (15) 

so that the square of its magnitude is 

r 2 = a 2 s  2 + R 2 - 2Rbcos(ks - ¢) + b 2. (16) 

Then Eq. (12), with f(s)  given by (9), becomes 

f_~ __ f_~o Rsin(ks _ ¢)rO ds ' 87r#u _ (0, sin ks, - cos ks)ds + (17) 
h ~ r0 oo ? .3 

where the second integral is absolutely convergent. Moreover an integration by parts turns the 
first integral, which converges although not absolutely, into a new form 

f ? ( 0 ,  cos ks, sin ks) 
- oo r3k [a2s + Rbk sin(ks - ¢)]ds (18) 

with the absolute convergence that is convenient for computational purposes. This gives 

87r#u _ Rsin(ks - ¢)(-as,  Rcos¢ - 2bcos ks, Rsin¢ - 2bsinks) 
h oo 

c~2Sk (0, cos ks, sin ks) r-~o (19) 

°°Xsin(O - ¢)[-aj30, j32(Xcos ¢ - 2cos 0), 32(Xsin ¢ - 2 sin 0)] - t~20(O, cosO, sinO) dO, 
= oo [o~202 +/p(x2 - 2Xcos(0 - ¢) + 1)]3/2 

where the substitution ks = 0 has been made along with introduction of the nondimensional 
quantities 

R/b = X and bk = 3; so that, by Eq. (2), a 2 + 32 = 1. (20) 

Before investigating the three components of expression (19) when X and ¢ take general 
values, I focus first on the case ¢ = 0 which includes the exceptional values X = 1, ¢ = 0 
already treated in [1]. When ¢ = 0, the integrand's denominator is an even function'of 0, 
allowing the integral to be simplified by combining values of the integrand for 0 and -0 to 
give 

47r#u _ [a3XBl (a ,X ) ,  O, 232XB2(a ,X)  + a2Bl(a,X)],  (21) 
h 

where for general X the functions B1, B2 are defined as 

fo ~ {0 sin O, sin 2 O} 
{BI (a ,X) ,  B E ( a , X ) } =  [aEO+32(X2_2XcosO+l)]3/2dO. (22) 

It is only in the exceptional case X = 1 that the integrals (22) fail to converge, with 
both integrands behaving (since O~ 2 + f12 = 1) like O-las 0 --* O. In that exceptional case 
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the range of integration has the small interval 0 < 0 < E excluded (see (a) above; here, 
e = k5 = 5.2a/A) and functions A1 (a) and A2(a) have been defined [1] so that 

f oo {0 sin O, sin 2 O} 
{ -  In e + a l  (oe), - In e + A2(a)} = [a202 + 2132(1 - cos 0)]3/2 dO (23) 

for small e. Then, in order to obtain the velocity w on the surface of the flagellar cross-section 
s = 0, Eq. (21) has to be used for X = i with these expressions (23) replacing {BI, /32} and 
with an addition of two terms: the extra term 

a(/3, O, -c~) (24) 

proportional (see (b) above) to the component of stokeslet strength normal to the flagellar 
centreline, and another extra term 

l [(0, cosks,  s i n k s ] '  
- = (0 ,  0 ,  1) ( 2 5 )  
2 r0k J -6 

which emerges from the integration by parts applied to the first integral in (17) when the 
interval Isl = r0 < ~ is excluded from this integral. Then a comparison with the value of 
w for s = 0 specified by Eq. (8) gives the results 

47r#Uo/h = af t ( - In e + Ax - 1), 
(26) / 47r#wEb/h = 2/32( - In e + A2) + a2( - In e + A1 + 1) - 1 

These results (26), numbered as Eqs. (56) in [1 ], were comprehensively applied there (after 
the functions A1 (a) and A2(a), as defined above in Eqs. (23), had been plotted in Fig. 11) to 
derive, and to exhibit in Fig. 12, several key conclusions on zero-thrust swimming by helical 
flagella. Here, that Fig. 12 from [1] is reproduced with a new caption as Fig. 1; from which 
various inferences regarding the locomotion of microorganisms are drawn in Sections 3 and 
4 below. 

But I concentrate first on the shapes of the lower curves, which show how the ratio 
E/#U~ - a nondimensional measure of the flagellar rate of working E (per unit length) 
against viscous dissipation at swimming speed U0- varies with a for different flagellar 
wavelength-to-radius ratios A/a. In every case, a minimum rate of working for given swim- 
ming speed is approximately achieved when 

a2 = •2 = 0.5, (27) 

a geometrical configuration actually depicted in the bottom fight-hand comer of Fig. 1. Because 
this configuration, which appears to offer locomotion at minimum power consumption, is also 
typical of observed flagellar undulations, I use it in the following analyses of the three- 
dimensional flow field. 

Fig. 2 plots the functions B1 (a, X)  and B2(a, X)  for X > 0 in this case (27). At the 
exceptional point X = 1 where B1 and B2 become logarithmically infinite, those values (23) 
which need to be used there are inserted for a typical wavelength-to-radius ratio A/a = 100 
(which gives In e = -2.96).  For every negative X,  on the other hand, the integral expressions 
(22) for B1 and B2 converge and are also plotted in Fig. 2. These are of interest because for 
¢ = 7r, as is easily verified, the three-dimensional flow field (19) is given by Eq. (21) after the 
substitution of ( - X )  for X. 
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Fig. 1. Biomechanical conclusions on zero-thrust swimming by a helical shape with circular cross-sections of 
radius a. Here, the effective angular velocity WE takes the form w - f~ which allows for the whole organism's 
response (a counter-rotation at angular velocity f~) to the resistive torque bh per unit length. The same horizontal 
scale (shown in three versions) applies to the torque, swimming speed and energy2dissipation diagrams. Energy 
dissipation E per unit length of flagellum is a minimum in conditions (around a = /3 = 0.5) for which the 
aspect-ratio 2b/A of the helix takes the value 0.3 used for illustration in the right-hand diagram. Fig. 1 is based on 
the same data as Fig. 12 of Ill (where, however, labels on Uo/V~ curves were misprinted in reverse order) but 
includes results for A/a = 25 which are found relevant to motions of the bacterium Spirillum (Section 4) while 
omitting those for A/a = 400 which seem to lack microbiological relevance. 



44 Sir James Lighthill 

/3 

30- 

2g-  

2.0 

14" 

143 

0.S" 

30 i~ 

2q I ~ 

2o-I 

I.O-~ 
I 

I I I I I I I I I I 

-5- -~- -~ -2 -I 0 I 9_ 3 ~r 

I 
5 

I 

X 

Fig. 2. Here, the functions (22) are plotted (solid lines) for all values of X except those near X = 1, where dotted 
lines indicate a transition to the limiting values (23) computed for A/a = 100. 

It may be noted that, for large [X[, the function B1 tends exponentially to zero like a 
multiple of the Bessel function K0(ISl), whereas B2 becomes algebraically small like a 
multiple of X -2. This latter function appears just in the z-component of (21), which it causes 
to fall off like X -  1 in the expected vortex-type far field. 

These distinctions become even clearer in Figs. 3 and 4, depicting fluid velocity components 
in the x-direction (along the axis of the helix) as well as in planes at right angles to it. In Fig. 3 
the solid line shows the x-component of expression (21) for 47r#u/h, which, once again, falls 
off exponentially for large IXl • It may also be noted that its limiting value as X ~ 1 does 
not precisely depend on a replacement of expressions (22) by (23), because of the need to 
incorporate the extra term (24); thus, the solid line represents - a 3 X B 1  for general X but for 
X = 1 takes the value - a 3 ( -  In E + A1 - 1) as in Eqs. (26). 

A striking feature of Fig. 3 is that the solid line exhibits for X > 0 the expected negative 
axial velocities, associated with swimming movements in directions opposite to that of wave 
propagation; but that, in stark contrast, there is flow in the positive x-direction (backflow) 
for X < 0. As already mentioned this corresponds to motions of fluid where ff = yr. Also, a 
computation of the x-component of 47r#u/h for ¢ = 7r/2 and ~b = -1r /2  (easy because the 
integral (19) in these cases offers no convergence problems) again yields positive values - 
given by the broken line in Fig. 3. 

Moreover, no exhaustive computing is needed to see that, for general values of X, negative 
and positive values of the axial velocity are in exact balance - in the sense that their ~b-average 
is zero. In fact, the integral with respect to ~b of the x-component of (19) from ~b = -Tr to 
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Fig. 3. Illustrating axial motions of fluid (x-components of 47r#u/h), computed for a 2 = / 3  ~ = 0.5 in the plane 
x = 0 intersected by the helix at the point y = b, z = 0. Because a change by -4-7r in the polar angle ¢ has the 
same effect on the velocity field (19) as a sign change for X = R/b, the solid line (computed for ¢ = 0 and real 
X)  gives values on the y-axis with X = y/b while the broken line (¢ = rr/2) gives values on the z-axis with 
X = z/b. Axial velocities which are negative (that is, in the direction of swimming) are precisely balanced by 
"backflow" in the positive z-direction, as indicated by Eq. (28). 

¢ = rr vanishes; simply because 

f ~  X sin(0 - ¢)d¢ 
r [0~202 + f12(X2 - 2X cos(O - ¢) + 1)] 3/2 

= - - ~  [a202 + #2(X2 - 2Xcos(0 - ¢) + 1)]l/2 _~ (28) 

is zero (the integrated term takes the same value at both limits). 
A helical distribution of stokeslets produces, then, axial velocities that are highly localised. 

They fall off exponentially with distance from the axis; furthermore, at every such distance, 
the negative axial velocities near the helix are balanced (in the sense of an average with respect 
to ¢) by positive "backflow" velocities. 

By contrast, the velocity components in a plane perpendicular to the axis of the helix are 
shown in Fig. 4 to be far from localised. Indeed, because the fluid is subjected to a torque ( -  bh) 
per unit length of flagellum about the x-axis - which amounts to a torque ( - b h / a ,  0, 0) per 
unit distance along that axis, a vortical far field 

bh sine bh cos¢ 
u = O, a 47r#R' a 47r#R] 

is generated. In nondimensional terms this gives, for large X, 

47r#u ( sine cos¢  
= 0, a--x'  a x / "  

(29) 

(30) 

In Fig. 4, curve (a) plots the exact values of the z-component of expression (21) for 47r#u/h 
where ¢ = 0 (values for positive X) and where ¢ = 7r(values for negative X). They coincide 
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Fig. 4. Illustrating fluid motions at right angles to the axis of the helix. The solid lines give computed components of 
47r#u/h as follows: (a) its z-component on the y-axis (where however the y-component vanishes) with X = y/b, 
alongside (b) its y-component and (c) its z-component on the z-axis, both with X = z/b. The broken lines show 
the vortical far-field forms (30) to which curves (a) and (b) are asymptotic. 

with those given - see broken line - by Eq. (30) for IXI > 5. Once again, the value at the 
exceptional point X = 1 of this z-component of 4rr/zu/h has been included for A/a = 100 
as given by the basic theorem of flagellar hydrodynamics (in (26), it is minus the right-hand 
side of the second equation). 

Such a vortical interpretation is further reinforced by a study of curve (b), which plots 
the y-component of 4rr#u/h where ¢ = 7r/2 (values for positive X) and where ¢ = -7r /2  
(values for negative X). Once again, the broken lines indicate values given by Eq. (30); 
which, this time, have already begun to coincide with curve (b) for ISl > 2.5. Yet curve 
(c), in another striking contrast, plots the z-component of 47r#u/h for ¢ = +7r/2; which are 
values of ¢ for which the z-component of the vortical far field (30) is zero. This is why curve 
(c) depicts much more localised motions which (just as in Fig. 3) fall off exponentially for 
large IXl. 

A geometrically much clearer feel for the distribution of velocity components in the plane 
x = 0 (at right angles to the axis of the helix) is obtained when the data of Fig. 4 are replotted 
as in Fig. 5. This shows the velocity vector at points y = 0.4bN, z = 0 (where N takes 
integer values from - 2 0  to +20; thus, the actual position y = b, z = 0 of the helix itself is 
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Fig. 5. Here the data of Fig. 4 are replotted as vectors representing values on the y-axis and on the z-axis of fluid 
velocities resolved onto the (y, z) plane x = 0. 

omitted) as derived from curve (a), and also the velocity vector at points y = 0, z -- 0.4bN 
(for the same range of N)  as derived from curves (b) and (c). Each vector represents the 
velocity resolved onto the plane x = 0 (for x-components see Fig. 3) with its length giving 
the magnitude of that resultant (on the scale indicated in Fig. 4) and the arrow giving its 
direction. 

This pattern of velocity vectors in Fig. 5 shows the salient features of the flow field in the 
y, z plane very clearly. Near the helix itself (y = b, z = 0) which, per unit length, exerts in the 
negative z-direction a force (0, 0, - h ) ,  strong velocity components in the negative z-direction 
are induced (even on the z-axis itself). At rather greater distances, on the other hand, these 
become overshadowed by the collective effect of the average torque per unit length generated 
all along the helix. 

Against the background of this physical interpretation of y- and z-components of the 
flow field in the plane x = 0 it is worth reconsidering the earlier results on x-components 
(Fig. 3) with the aim of asking at the conclusion of Section 2 if they can be given any analogous 
interpretation. Any such enquiry must, of course, begin by acknowledging its greater difficulty, 
resulting from the fact that x-components of flow in the plane x = 0 cannot be influenced 
by the action of a stokeslet which actually lies in that plane. Thus any attempt at a physical 
interpretation of those x-components of flow must relate them to the effect of stokeslets in 
nearby planes with either positive or negative s. 

In Fig. 6, showing the positions and orientations of stokeslets for a positive and a negative 
value of s (each with the magnitude of ks moderately small), the two lines L+ and L_ are 
straight lines passing through the origin and one or other of the stokeslets. In the associated 
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Fig. 6. Illustrating, in the (y, z) plane, the positions and orientations of stokeslets for a positive and a negative 
value of s, both with [ ks I moderately small. In each case the factor in square brackets in Eq. (31) is positive 
below the radial line (L+ or L_) through the stokeslet and negative above it. 

stokeslet fields - each expressed by the integrand of Eq. (12) - the first term in the numerator 
has no x-component, but the second has x-component 

- a s [ f ( s ) . r o ]  (31) 

on the plane x = 0. Here the factor in square brackets is positive below the associated line 
(L+ or L_) in each case, and negative above it. From this geometrical property of expression 
(31) three conclusions may be drawn: 

(i) the wedge-shaped region that includes the positive y-axis (¢ = 0 in polar coordinates) 
receives negative contributions to the x-component of flow from both nearby stokeslets, 
because it lies below L+ where s > 0 and also above L_ where s < 0; 

(ii) conversely, the wedge-shaped region that includes the negative y-axis (¢ = 7r) receives 
positive contributions to the x-component of flow (that is, backflow) from both nearby 
stokeslets, lying as it does above L+ where s > 0 and below L_ where s < 0; 

(iii) moreover, in the rest of the plane, where contributions of opposite signs arise from the 
two stokeslets, the contribution from a nearer stokeslet is likely to be greater (the ro  3 
factor in the integrand of (12) being important here); so that positive x-components of 
flow (backflow) tend to arise not only on the positive z-axis (¢ = 7r/2) which lies above 
the line L+ associated with the nearer stokeslet with s > 0, but also on the negative 
z-axis (¢ = -7r/2) which lies below the line L_ associated with the stokeslet with s < 0 
which is nearer in this case. 

These considerations, offering some intuitive feel for why, in the distribution of z-velocities, 
backflow plays such a substantial role, conclude my physical discussion of results on the 
three-dimensional flow field. 
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Eukatyotic flagella derive their motility from the internal 
9 + 2 structure (or Axoneme): 
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The flagellar membrane surrounds this axoneme in all 
cases (and surrounds additionally, in Euglenida. Oino- 

flagellida and Kinetoplastida, an intfaflagellar rod). 

Fig. 7. In eukaryotic microorganisms, each flagellum contains an axoneme whose cross-section takes the form 
sketched here [1] from comprehensive data in a paper [6] by Warner and Satir. Note those attachments to each 
doublet tubule which permit active sliding relative to an adjacent tubule. 

3. Helical propulsion in eukaryotic microorganisms 

In eukaryotic microorganisms the flagellum possesses (see Section 1) an active component, 
the axoneme, capable of producing bending movements of many kinds. Here I focus on its 
use for generating helical undulations. 

The axoneme consists (Fig. 7, derived from [6]) of 9 tubules of"doublet" form surrounding 
2 "singlet" tubules. Each doublet tubule includes attachments which allow it to slide actively 
relative to the adjacent doublet tubule. This sliding process (see [1] and [6] for more details) 
involves the breaking of existing chemical bonds between those attachments and the adjacent 
tubule, followed by the formation of new bonds with molecules further along that tubule. The 
sliding is powered by the dephosphorylation of adenosine triphosphate (ATP). 

In a journal with readers expert in engineering mathematics, I ought perhaps to contrast 
such a process of bending generated when 9 inextensible tubules slide relative to one another 
with classical analyses of the bending of an elastic rod. They find that, to a close approximation, 
plane sections remain plane - so that fibres become extended on the outside of any bend and 
shortened on the inside. By contrast, active sliding means that plane cross-sections need not 
remain plane, which can reconcile bending with the inextensibility of each tubule. 

Another interesting contrast emerges when we compare the active use of the axoneme to 
generate helical undulations with an alternative process involving pure corkscrew rotation. 
Although both processes are shown in Section 2 to produce the same movements of the 
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centreline (see Eqs. (5) and (6) for these), nevertheless they exhibit important differences 
in behaviour of each flagellar cross-section relative to its centreline. Specifically, corkscrew 
rotation necessitates a rotation of the cross-section's whole surface relative to its centreline 
(as in movements of bacterial flagella discussed in Section 4), whereas helical undulations 
take place without any such relative rotation. 

Just a simple revolving pattern of active sliding between adjacent tubules is required at 
each cross-section - to be repeated at other sections with a phase lag that of course increases 
in the direction of propagation - if helical undulation is to be achieved. The following analysis 
determines this pattern in quantitative detail. 

Here, using capital letters to avoid overlap with notation in other sections, I write 

S = s - ct so that C = (as ,  b c o s k S ,  b s i n k S )  (32) 

is the centreline locus (1), with unit tangent vector 

T = OC/Os  = (a,  - / 3 s i n k S ,  13cos kS) .  (33) 

The effective axoneme radius - that is, the radius from its centre to one of the doublet tubules 
- is written A, so that a typical location of the core of such a tubule relative to a flagellar 
centreline stretched straight along the x-axis is 

AQ, where Q = (0, cos ¢, sin ¢) (34) 

is a unit radial vector. 
Now I study how this relative position changes in the undulating movement (32), noting 

first that the component of Q along the tangent vector (33) is 

Q .  T = -/~ sin(kS - ¢). (35) 

It follows that the vector N obtained by resolving Q onto the plane perpendicular to the 
tangent T is 

N = Q - (Q.  T ) T  = Q +/3 s in (kS  - ¢)T,  (36) 

while the magnitude of N is found to be 

N = [1 - 132 sin2(kS - ¢)]I/2; (37) 

a value obtained most easily by recalling that the sum of the squares of the resultants of the 
unit vector Q in these perpendicular directions must be 1. 

In a helical undulation (32), where (see above) the cross-sections themselves are not rotated, 
a typical location (34) of a tubule core relative to the centreline is mapped onto a position 

P = C + A N - 1 N  (38) 

for the same tubule. In other words, its position relative to some centreline point (32) is a 
product of the effective radius A with a unit vector N - 1 N  in a direction obtained by resolving 
Q onto the plane of a flagellar cross-section. Eq. (38) may be used for the location of each 
of the nine tubules by giving ¢ nine equally spaced values (the spacing being 40°; that is, 
2rr/9 radians). 

I can now verify the impossibility of plane sections remaining plane by calculating how 
the distance ds¢ along one of the tubules (38) for a particular value of ¢ is related to distance 



Helical distributions o f  stokeslets 51 

ds along the centreline. The rate of change of position P with s for fixed t is given by (38) 
and (33) as 

OP/Os  = T + A O ( N - 1 N ) / O s ,  (39) 

where the first term has magnitude 1. Also, because the second term includes the factor A (the 
axoneme radius, very small compared with the flagellar wavelength), it suffices to determine 
the magnitude of (39) to the first order in A as 

d s ¢ / d s  = ]OP/Os I = 1 + A T .  c 3 ( N - 1 N ) / O s ,  (40) 

with N given by Eq. (36). 
Three facts can be used to simplify expression (40): T and N are orthogonal (T .  N = 0) 

and T is of fiXed unit magnitude (T.  cOT~cOs = 0) while expression (34) for Q is independent 
of s. It follows that 

d s ¢ / d s  = 1 + A N - l f l k c o s ( k S  - •), (41) 

a rather simple expression for the ratio of distance ds¢ along a tubule for given ~ to the 
corresponding centreline distance ds. With expression (37) for N, it can be integrated to 
give 

s¢ = s + A s i n - l [ f l s i n ( k S  - ~)]. (42) 

Eq. (42), with S = s - ct as in (32), not only confirms that tubule inextensibility is 
incompatible with plane sections remaining plane but also specifies the amount by which this 
inextensibility requires each tubule to be shifted out of its initial plane during undulation. This 
shift (in the direction s increasing) is given by the second term on the right-hand side, which 
may be written 

A F ( k s  - ~ot - ~b) with F ( Z )  = sin-l(f lsinZ).  (43) 

The necessary pattern of shifts is revolving around the axoneme at angular velocity w = kc(see 
(6) above), with different phases ~ for each tubule. The shift relative to an adjacent tubule 
is 

A G ( k s  - wt  - ¢) with G ( Z )  = F ( Z )  - F ( Z  - 2r/9) ,  (44) 

of which the time-derivative gives the sliding velocity as 

- w A C ' ( k s  - w t  - ¢ ) .  (45) 

Fig. 8 shows the periodic functions G ( Z )  and G ' ( Z )  for the case a 2 = ½ on which I focus in 
Sections 2 and 3. The simple revolving pattern of sliding (45) is repeated for each value of s 
with a phase lag which increases in the direction of propagation. 

Helical undulation, then, makes no specially complex demands on the organisation of 
patterns of relative sliding of adjacent tubules in an axoneme. Accordingly, in the remainder 
of this section, I can concentrate primarily on its advantages and disadvantages in relation to 
propulsive efficiency. 

Its principal advantage, as noted in Section 1, is linked with the uniformity of contributions 
from all along the flagellum to the rate at which the flagellar movements that yield a given 
swimming velocity are doing work against viscous dissipation. Such uniformity is beneficial 
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Fig. 8. Illustrating the active sliding movements required for a flagellum to execute helical undulations; these 
involve displacements of each tubule (relative to the next) described by the function G(z), with sliding velocities 
described by G' (Z), as in Eqs. (44) and (45). 

because swimming velocity is related linearly, whereas rate of working is related quadratically, 
to flagellar movements - and, broadly speaking, the ratio of the mean square of any quantity 
to the square of its mean is least when the quantity deviates negligibly from that mean. In the 
zero-thrust case, moreover, the uniform ratio E/#U2o is itself minimised under condition (27) 
with ~2 l ~ .  

But helical undulation has a counterbalancing disadvantage, also noted in Section I. It 
causes the flagellum to be acted on by the fluid with a couple or torque (bh, 0, 0) per unit 
length (see (I 0) above), which can determine the angular velocity (~, 0, 0) of a superimposed 
corkscrew rotation. 

Here, I analyse first those relatively simple cases when the torque bhL on a flagellum of 
total length L is balanced by the couple D ~  resisting rotation of the cell body at angular 
velocity ~ (here, D may be described as the cell body's rotational damping constant). In other 
words, ~ is determined by a balance equation 

Dr2 = bhL. (46) 

Moreover, the second of Eqs. (26) allows the torque bh per unit length to be written in terms 
of X, the reciprocal of the right-hand side, as 

bh = 47r#b2XwE, (47) 

with X plotted in the upper part of Fig. 1. Eqs. (46) and (47) together give an expression 

~OE 03E [, 47r#b2L ~ -1 
1 + (48) 

WE + f~ X D ) 

for the factor by which the effective angular velocity WE falls short of the angular velocity 
w = kc directly associated with the helical undulation (1). 
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This reduction factor (48) is important for two reasons. First, the swimming velocity U0 is 
diminished by the same factor. Indeed the ratio 

kUo equal to Uo WE 
aWE' ~ with VE = aCE = a-if-, (49) 

is fixed by Eqs. (26) as (~/a) times the ratio of their right-hand sides, and this is plotted in 
the middle part of Fig. 1; for example, it takes the value 0.27 in the case (27) with A/a = 100 
on which I focus on this paper. Thus any reduction in wE diminishes also U0. (In expression 
(49), VE is the effective wave velocity along the axis of the helix; in other words, the wave's 
speed relative to the cell body as viewed under a microscope.) 

Secondly, propulsive efficiency is diminished by the same reduction factor (48). Thus 
although it might be supposed that the plot of E/#U~ in the lower part of Fig. 1 has specified 
once for all the energy dissipation E per unit length of flagellum for swimming speed U0, 
nonetheless an additional rate of energy dissipation Df~ 2 arises from cell body rotation at 
angular velocity f~ against an opposing torque DfL Therefore the total energy dissipation 
takes the form 

Df~ 2 + EL, (50) 

which Eqs .  ( 4 6 )  and (11) allow to be written as 

f~(bhL) + (wEbh)L = wbhL = w--~-(EL), (51) 
¢0 E 

greater by the factor w/wE than the dissipation due to flagellar movements alone. 
Admittedly, this analysis of dissipation has tacitly made an approximation, by assuming 

that a linear combination of flow fields due to flagellar movements and to cell body rotation 
produces viscous dissipation equal to the sum of that associated with each flow field separately 
- even though viscous dissipation has a quadratic dependence on gradients of fluid velocity. 
Here, however, studies of the former flow field (Section 2 above), combined with results on 
flows due to body rotation, show their dissipation fields to be spatially separate to such an 
extent that expression (51) should be quite a close approximation. 

Actually, the leading term in the flow field of a rotating body that exerts a torque (Df~, 0, 0) 
on the fluid is the well known "rotlet" field 

Df~ [ ( 0 ~ - - ~ ? ) ] ,  wherer2=x2+y2+z2  (52) 

and the origin is taken at a central point within the body. In (52) the expression in square 
brackets may be identified with a limit as e ~ 0 of four stokeslets of strengths 

(0, 0, :k(2e) -1) at (0,-4- e, 0) and (0, q:(2e) -1, 0) at (0, 0, + e), (53) 

which evidently represent a set of forces equivalent to a couple of moment (1, 0, 0). 
Two considerations suggest that the dissipation fields of this flow (52) and of the flow 

due to flagellar movements are spatially separated. First of all, the regions of large velocity 
gradient (leading to large dissipation) within the three-dimensional flow field depicted in Figs. 
3,4 and 5 are regions with the distance R = (y2 + z2)1/2 from the x-axis limited to values 
between 0 and about 2b, where b is the radius of the helix; yet their distance x from the 
cell-body centre is in general much greater, so that the r 3 in the denominator of the rotlet field 
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(52) makes it small in those regions. Secondly, the distribution of viscous dissipation per unit 
volume in this field (52) is readily calculated as 

9# \87 r# ]  r 8 (54) 

which - with, now, an r 8 in the denominator - is small for values of x in the region of the 
flagellum; that is, values of z exceeding its maximum value on the body surface. Indeed, even 
for a spherical cell body, we may verify that only 1 part in 16 of the total energy dissipation, 
distributed as in (54), appears in the region with z exceeding the sphere radius (while the 
fraction may be expected to be even less for more elongated bodies). 

On the other hand, the rotlet field (52) due to cell body rotation has a much more substantial 
influence on some other aspects of the flow analysed in Section 2. Above all, it limits 
significantly the values of R within which that flow's far field can take the simple vortical 
form depicted in Fig. 5. Because the main emphasis in this paper is on three-dimensional flow 
fields associated with helical movements, I now study this limitation in some detail. 

The impossibility of any net torque acting on a self-propelling organism in Stokes flow, 
which leads in the case discussed here to the torque balance Eq. (46), excludes all possibility 
not only of a vortical far field of order R -  l like (29) but even of any rotlet far field of order 
r -2 like (52). Here, it is the flagellum's finite length - equal to L as measured along the 
centreline or g = aL along the x-axis - which already rules out any R -  I far-field behaviour 
for distances R comparable with g, where it produces rather a transition to a rotlet field equal 
and opposite to (52) centred on the flagellum's mid-point. However, at such distances this is 
increasingly cancelled by (52) itself. 

Details of the above process are shown in Fig. 9, plotting far-field velocities in the azimuthal 
direction (¢ increasing) at three positions I,II and III (with, respectively, z/g = 0.25, 0.5 and 
0.75) along the length of a flagellum, which acts on the field with a net torque ( -Df~ ,  0, 0) 
uniformly distributed along the distance 0 < z < e while a concentrated rotlet (52) of strength 
(Df~, 0, 0) acts at the cell body position x = 0. The dotted line represents the vortical far 
field (29), while the two broken lines show only the effect of finite length of flagellum (i) 
at the midpoint II and (ii) at either of the quarter-length points III or I. These plots are 
computed, of course, as the azimuthal velocities associated with a uniform distribution of 
rotlets of strength ( -bh /a ,  0, 0) per unit axial distance z from 0 to g, their total strength 
being -bhg/a  = -bhL. The solid lines add on the effect of the opposing rotlet of strength 
bhL = DO at x = 0; an effect which, as R/g increases, becomes very marked - especially 
at the position I near the cell body. Moreover all the solid lines exhibit an absence of any 
significant far field at distances R > L 

The last two discussions yield opposite conclusions on the realism of the near-field and 
far-field features of the three-dimensional flow pattern around an unbounded helix analysed in 
Section 2. The near field (where the main viscous dissipation occurs) is negligibly influenced 
by superposition of the rotlet motions (52). On the other hand, analysis (Fig. 9) of the far-field 
behaviour shows that vortical far fields, typical (Fig. 5) of flows generated by an unbounded 
helix, become rapidly attenuated for increasing R (and vanish for R > g) in the case of a 
eukaryotic microorganism where a flagellum of finite length is attached at one end to the 
cell body. This conclusion, in its turn, can be contrasted with a later study (Section 5) of 
a highly specialised type of helical propulsion, characteristic of just a single bacterial order 
(Spirochaetales), which demonstrates how its three-dimensional flow field remains spatially 
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Fig. 9. For the case sketched (helical undulation of a single flagellum of axial extent g, attached to a cell body 
that responds with a rotation resisted by an equal and opposite torque) the solid lines plot "far-field" values of 
azimuthal fluid motions in the planes I, II and III as functions of distance R from the axis. In each case the vortical 
far field calculated (Figs. 4 and 5) for an unbounded helix is given by the dotted line. The broken lines (the upper 
for plane II, and the lower for either III or I) show how this is modified just by the finite length of the flagellum, 
while the solid lines allow also for the opposing rotlet field associated with cell-body rotation. 

concentrated - without any algebraically decaying terms in the far field - even when the 
helix is idealised as one of unbounded extent. 

Now I return to the issue of how, in eukaryotic microorganisms, those inherent advantages 
for propulsive efficiency that are associated with helical undulation of a flagellum may be 
eroded by counterbalancing disadvantages related to cell-body rotation. In the simple single- 
flagellum case analysed so far, all disadvantages are encapsulated in the reduction factor 
(48), which diminishes the zero-thrust swimming speed U0 generated by a given flagellar 
undulation while its reciprocal (see (51) above) augments the rate of working needed to 
produce a given swimming speed. The rest of Section 3 briefly interprets various features 
of microorganisms with two flagella in terms of the idea [1] that these may have evolved as 
methods for retaining the advantages of helical propulsion while its disadvantages were either 
(i) limited, (ii) annulled, or even (iii) transmuted into advantages. 
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Fig. 10. Diagrammatically illustrating some eukaryotic microorganisms possessing two flagella: (a) Procentrum 
from the algal class Desmophyceae; (b) Nephroselmis, from the class Prasinophyceae; (c) Chlamydomonas, from 
the class Chlorophyceae; (d) a typical dinoflagellate Gymnodinium, showing its primary propulsive flagellum and 
a secondary transverse flagellum which beats in a groove let into the organism's external "armour"; (e) Euglena, 
showing the 180 ° bend near the base of its propulsive flagellum (by contrast, the secondary flagellum in Euglena 
is essentially vestigial). 

First of all, it is clear that effects of the reduction factor (48) can be "(i) limited" by any 
substantial increase in D, the damping constant specified as resistive torque per unit angular 
velocity of cell body rotation. Such limitation seems to have been achieved in the algal class 
Desmophyceae. For example, the propulsive flagellum in the genus Prorocentrum (Fig. 10) 
pulls the organism forwards by means of a fast tip-to-base undulation (see [7], p. 148) while 
a secondary flagellum - beating only slowly - stretches out a considerable distance at right 
angles to the swimming direction; such a big moment arm greatly increases that torque which 
resists cell rotation, so that D becomes much larger and effects of the reduction factor (48) 
are limited. 

It is also clear, moreover, that the entire disadvantage associated with cell body rotation in 
response to the torque resulting from helical undulation of a flagellum can be "(ii) annulled" 
where an organism possesses two flagella able to execute equal helical undulations of opposite 
sense. Within the algal class Prasinophyceae, the genus Nephroselmis (Fig. 10) is commonly 
observed to move with both flagella undulating [8]. Here, the cell body does not rotate - 
just as would be expected if the undulations were both helical but exerted equal and opposite 
torques. 

Again, among the green algae Chlorophyceae, the famous single-celled organism Chlamy- 
domonas (Fig. 10), which commonly swims forwards by motions of its two flagella similar to 
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those of the human breaststroke, can be induced to beat a hasty retreat (escape reaction) with 
the flagella extended while undulations pass from base to tip along them. These would gener- 
ate a high escape speed, and do so efficiently, if yet again they were equal helical undulations 
of opposite sense. 

I note in passing that each of the three-dimensional flow fields associated with such a pair 
of opposed helical undulations includes a near field similar to that studied in Section 2. Their 
vortical far fields, on the other hand, tend to cancel out - which is yet another process acting 
to prevent the realisation of the far-field behaviour illustrated in Fig. 5. 

Admittedly, controversy continues for certain organisms, including Chlamydomonas, about 
whether observed flagellar movements were broadly planar or broadly helical [9]. Indeed, 
because a three-dimensional undulation of a flagellum is seen under the microscope as its 
two-dimensional projection, helical undulations may have been reported as planar in some 
cases. Such helical undulations, on the other hand, can be presumed to have been present when 
rotation (or "gyration") of the cell body has been observed; indeed, some rotation may be 
expected even where two flagella execute opposite undulations, because the opposing torques 
are unlikely to be exactly equal. It is against this background that clear accounts of cell-body 
rotation in Chlamydomonas, both by Lowndes [10] (see pp. 119-120) and by Lewin [11] 
(who moreover reported it as being converted into a rapid spin when only one flagellum was 
beating) may perhaps be viewed as indicative of helical undulations. 

I turn now to cases where disadvantages related to cell body rotation seem to have been 
"(iii) transmuted into advantages," arguing such an interpretation first for the dinoflagellates. 
As their name suggests, these are powerful single-celled organisms, amongst the larger of the 
flagellates, and are encased in formidable "armour". In addition to the propulsive flagellum 
which exhibits a base-to-tip undulation, dinoflagellates typically possess a "transverse flag- 
ellum", situated - and able to undulate - within a groove let into their armour (Fig. 10). 
Observations on Ceratium tripos showed [12] that the swimming organism usually displayed 
a substantial rotation about its direction of locomotion, but that the sense of this rotation was 
anticlockwise or clockwise according as the transverse flagellum (within its groove) was or 
was not beating. 

Those observations strongly suggested [1] that the propulsive flagellum generates a helical 
undulation which, by itself, tends to produce a clockwise rotation of the body. On the other 
hand, the beating of the transverse flagellum in its groove is able to exert an anticlockwise 
torque that exceeds the clockwise torque associated with the helical undulation. Then the 
resulting sign change in the cell body's angular velocity f2 means that the effective angular 
velocity wE = w - f~ can actually exceed w. 

This at once reverses one of the disadvantages linked with cell-body rotation, since Eq. 
(49) implies now not a reduction in the swimming speed U0 but an enhancement (in fact, 
the corkscrew rotation now generated reinforces the ability of helical undulations to produce 
forward motion). Some more careful analysis may be required to identify the effects on rate of 
working for a given swimming speed, but an advantage can be glimpsed first of all in a case 
when the torque exerted by the transverse flagellum is just enough to cancel that exerted by the 
propulsive flagellum. In this case both the rotation f2 of the cell body and the energy dissipation 
Df~ 2 associated with it must disappear from the total rate of working (50); being replaced 
merely with any rate of working by the transverse flagellum beating in its groove - expected 
to be less because of the limited volume of fluid set into circumferential motion. Next, as 
the torque applied by that flagellum is further augmented to make f2 negative, the swimming 
speed increases with a positive gradient while the extra dissipation rate Df~ 2 increases at 
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first with zero gradient; suggesting that any overall optimum taking both considerations into 
account must be found for a negative value of ft, as observed. 

This section is now concluded with a description of microorganisms from the famous 
genus Euglena (Fig. 10). In Euglena the remarkable and superficially awkward arrangement 
of its one effective flagellum may have even more subtly turned what is potentially the main 
disadvantage of helical undulations into an advantage [ 1 ]. 

Viewed under a microscope Euglena displays quite clearly those cell body rotations which 
(as usual) result from the torque associated with the helical undulation of its flagellum (see 
pp.116-8 of [10], together with some valuable analysis in [13]). When it moves forwards, 
with this flagellum characteristically trailing from the anterior end (and giving thrust by a 
base-to-tip helical undulation) it seems inevitable that these rotations of the body must be 
transmitted past the 180 ° bend. (Indeed, all the indications are that axoneme structures are 
unable to sustain the high local torsion that would otherwise be required.) 

It is, on the other hand, a familiar fact that a rotation in being transmitted by the torsional 
stiffness of a flexible filament around a 180 ° bend produces a complete reversal of the sense 
of its rotation in space. Moreover, if the resulting reversed rotation simply adds to the helical 
undulation a (reinforcing) corkscrew rotation with angular velocity (-[2) instead of 12, then 
the effective angular velocity coE becomes w + f2 instead of w - f2. When this substitution is 
applied in Eq. (48), the new value of (WE~co) becomes 

= 1 - x ( 5 5 )  
O3 

Eq. (49) then implies a substantial enhancement of the swimming speed U0. 
This time, on the other hand, the increase in U0 is not accompanied by any reduction in 

energy dissipation for a given swimming speed. A dissipation rate Df~ 2 still accompanies cell 
body rotation, so that Eq. (50) continues to describe the total rate of working; moreover, its 
ratio to dissipation by flagellar movements alone takes (since coE is now co + f~) the value 

47r #b2 L coB+f2_2 co = I + x '  -~ ; (56) 
COE coE 

exactly the same value as was implied by Eq. (51). 
Nonetheless, the technique for swimming-speed enhancement used by Euglena is impres- 

sive. I note finally that it demands, in the region of the 180 ° bend, only a minimal amount 
of active sliding between adjacent tubules within the axoneme: just a revolving pattern of 
sliding at the frequency f~ of body rotation. This, of course, is a considerably less exacting 
requirement than the well established pattern revolving at frequency w which I described at 
the beginning of Section 3. 

4. Helical propuls ion in bacteria 

The bacteria are among those living cells which lack the spatially organised structures - 
incorporating membrane-bound nuclei and many other membrane-bound organelles - of 
eukaryotic cells. In each bacterium, rather, a single cytoplasmic membrane, inside the cell 
wall, bounds all the cell's fluid substance or cytoplasm. The mechanisms underlying their 
motility are also very different. 

Actually, large numbers of bacterial species (including almost all the organisms of "coccus" 
shape - spherical or spheroidal) exhibit no active motility; while some other species - 



Helical distributions of stokeslets 59 

with cells grouped, usually, into filamentous "trichomes" - are capable of various so-called 
"gliding" movements [ 1]. Nevertheless the vast majority of actively swimming bacterial cells 
derive their motility from the special properties of those bacterial flagella which, as I stressed 
in Section 1, are highly distinct in character from the flagella of eukaryotic microorganisms. 
They are thinner (of diameter 0.02 ixm rather than the 0.2 I~m shown in Fig. 1) and far 
more homogeneous. The protein, flagellin, of which each is composed (different, and yet 
only slightly different, in different bacterial species) has the capability, when in solution, of 
forming itself into flagella-like filaments, which take the form of helical tubes with empty 
central core. Commonly, a bacterial cell has many flagella, each being attached to it [1] by a 
short "hook" (with a similar, yet not identical, chemical composition) which enters through 
a hole in the cell wall into the region between that and the cytoplasmic membrane where a 
remarkable "rotary motor" is able to turn the flagellum. 

I wrote my 1975 John von Neumann Lecture [1] when the existence of rotary motors 
driving bacterial flagella had only just been proved and I devoted ten pages (pp. 178-187) to 
an account of the overwhelming body of evidence for it which had by then been accumulated. 
Twenty years later these conclusions are well established [14] but readers interested in how 
that early body of evidence was pieced together may read about the details in those pages or 
elsewhere [15]. 

Here, rather, four different types of helical propulsion in bacteria are enumerated. Accounts 
of the first three types were sketched already in [1], but are now "filled out" with a little 
more detail as regards three-dimensional flow fields. The fourth type, however, on which is 
concentrated the last part of this section and the whole of Section 5, exhibits features which 

- although specially interesting from the biomechanics standpoint - were not described in 
[1]; and where the technique of Section 2 for studying the three-dimensional flow field proves 
particularly illuminating. 

One of these four types of helical propulsion may be easiest to describe first even though it 
appears in rather few bacterial species; namely, those with just a single flagellum. They include 
Pseudomonas citronellolis, a somewhat isolated member of the huge genus Pseudomonas 
(within which the vast majority of species have several flagella). Taylor and Koshland showed 
[16] how its single flagellum, a left-handed helix, is driven by a rotary motor which normally 
turns it in the clockwise sense (looking along the flagellum from its base); so that the cell 
body with the flagellum trailing behind it is pushed forward by the thrust associated with such 
a corkscrew rotation. On the other hand, as in other bacteria (see below), the rotary motor 
occasionally goes into reverse for a period - during which the organism briefly retreats before 
making its next advance. 

Again, the stalked bacterium Caulobacter (Fig. 11) pushes itself by the action of just a 
single flagellum at one end of the stalk during its motile phase, before ultimately using the 
stalk to attach itself to a substrate (see [17], p. 410). It is interesting to make comparisons 
between the pushing phase of the one and only flagellum in both these species of bacteria and 
propulsion by helical undulation as described in Sections 2 and 3. 

Actually, as far as motions of the flagellar centreline are concerned, the similarities are 
very close indeed. Eq. (1) still represents its position at a general time t, and Eqs. (5) and (6) 
its movement at t = 0, provided that ~ is here redefined as an angular velocity of corkscrew 
rotation relative to the cell body. Then c, similarly redefined as u/k,  becomes an apparent 
wave speed associated with that rotation (such as we observe, indeed, on turning a corkscrew). 
The only difference between the two cases lies in the fact that the entire cross-section of a 
bacterial flagellum rotates about the centreline (in contrast to the situation with eukaryotic 
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microorganisms), and this can be demonstrated experimentally (see [1], p. 180); although (see 
later) it affects only negligibly the three-dimensional flow field. 

Yet another similarity is that the corkscrew rotation at angular velocity ( -w,  0, 0) is 
opposed by a couple (bh, 0, 0) per unit length which can act to determine the rotary movement 
of the entire organism at an angular velocity (f~, 0, 0). Therefore, Eq. (7) still determines the 
effective angular velocity WE of the flagellar centreline relative to the ambient fluid; also Eq. 
(46), with D as the cell body's rotational damping constant, determines the value of ~2 so that 
the ratio WE/W is given by Eq. (48). Accordingly, the relationships between all quantities of 
direct biomechanical interest are once again exactly as shown in Fig. 1. 

Next, as far as the three-dimensional flow field is concerned, it continues to take the form 
of a sum of the helical field calculated in Section 2 and the rotlet field (52) associated with 
cell body rotation at angular velocity f2. However, both in Caulobacter and in Pseudomonas 
citronellolis, the origin of this rotlet field - taken at a central point within the body - tends to 
be somewhat farther removed from the flagellum itself than for the case illustrated in Fig. 9. 
This extends slightly, but only slightly, the distance beyond which it cancels out the equal and 
opposite rotlet far field due to the flagellum as a whole. 

The strong similarity to helical propulsion in eukaryotic microorganisms, evident in the 
case of those exceptional bacterial species that are treated above, should not however lead us 
to expect such similarity for bacteria in general. In all those other types of helical propulsion 
in bacteria that are studied below, it has become significantly weakened. 

Bacteria of the very next type are characterized as possessing substantial numbers of 
flagella, each of which takes the form of a left-handed helix. Moreover, when the associated 
rotary motors act normally to generate clockwise rotation, the various rotating helical flagella 
form into a bundle (or, occasionally, two bundles). Even though individual flagella cannot be 
resolved with a light microscope, the bundles can be seen (and seen very clearly [18] in oil- 
immersion dark-field microscopy) to assume also the form of left-handed helices. Furthermore, 
their corkscrew rotation is observed to push the bacterium forward on an approximately straight 
course. 

On the other hand, an important difference from species with just one flagellum emerges 
during each of those brief periods when (simultaneously) all of the rotary motors go into 
reverse. The result is now by no means simply a retreat. Instead, the double event comprising 
an immediate flying apart of the different flagella in a bundle, quickly followed by a regrouping 
after the motors begin to turn clockwise again, seems to generate an almost completely random 
change in direction [19]. 

The mathematical theory of the "random walk" suggests how advantageously such ran- 
dom changes in direction might permit bacteria to achieve, on the average, a movement up 
the concentration gradient of any attractant molecule (or down the gradient for a repellent 
molecule) in a solution. Essentially, the bacterium needs to make variations in the frequency 
of those changes in direction; a frequency which should be kept low whenever the organism's 
chemoreceptors sense an increasing concentration of attractant (or decreasing concentration of 
repellent) while being raised to much larger values in the opposite situation. Berg and Brown 
comprehensively demonstrated [ 19] that this is exactly the behaviour displayed by bacteria of 
the type discussed here. 

They form an enormous range of bacterial species. First, the majority of species in the 
previously mentioned "huge genus" Pseudomonas display several flagella, all emerging from 
two so-called "polar" regions; this is the case when the flagella may form two bundles. In 
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another genus Selenomonas, classified within the same order (Pseudomonadales), about 20 
flagella all emerge [20] from a single polar region (Fig. 11). 

In bacterial species belonging to the even bigger order Eubacteriales, flagella emerge from 
all round the organism - while tending nevertheless to form just a single bundle. Typical cases 
with six to eight flagella shown in Fig. 11 include Proteus mirabilis and Bacillus megaterium 
and are similar to the familiar Escherichia coli on which many of the experiments were done 
(an organism, Salmonella typhosa, with a far greater number of flagella is also shown). 

The above second type of helical propulsion in bacteria, found so abundantly in nature, is 
actually the one concerning which the methods of this paper utilising helical distributions of 
stokeslets have rather little to tell us (other than "by analogy" and in very general terms). It 
would be hard to model the helical bundle convincingly by those means; in the present paper, 
therefore, this is the type which, even though commonest, has been discussed most briefly. 

My last two types of helical propulsion in bacteria differ sharply from the first two, in that 
the organism's helical element is the cell body rather than any flagella. Also, the cell bodies 
concerned have considerably greater lengths (5 to 20 txm) than typical bacterial dimensions 
of 1 to 3 ~m. Here, however, the list of common features between these last two types comes 
to an end. 

Within the order Pseudomonadales, characterized by the existence (see above) of two 
polar regions (or occasionally just one) from which flagella emerge, members of the genus 
Spirillum display two such regions at the extreme ends of a helically shaped cell body (Fig. 11); 
however, the flagella are quite short compared with the cell body and are not helical to any 
significant extent. During motion, the flagella all rotate in the same sense about a longitudinal 
axis, exerting on the fluid a total torque T in that sense. The opposing couple T with which 
the fluid acts on the organism causes all of it, including the helical cell body, to rotate in the 
opposite sense, and it is this corkscrew rotation of the cell body itself which gives Spirillum 
its longitudinal motion (see [21] for a good biomechanical analysis and [22] for a still more 
accurate one using a Boundary Element method very close to the Lorentz approach; neither 
paper, however, being concerned with flow fields). 

In Spirillum volutans, for example, the observed frequencies of complete revolutions (in 
opposite senses) take typical values 40 Hz for the flagella and 13 Hz for the cell body [23]; 
those values imply, of course, that the rotary motors are generating, relative to the cell body in 
which they are situated, revolutions at the compounded frequency of 53 Hz. For each flagellum 
it is the curved hook (see above) which is directly rotated, so that the flagella proper make 
an angle with the swimming direction and are perceived, when rotating, as "a blurred cone"; 
moreover, because the forward swimming movement (at a speed around 15 p.m/s) applies drag 
forces to them, both cones of flagella are swept backwards to a certain extent (Fig. 12). 

In relation to the themes of this paper, it may be interesting to observe that much of the 
analysis of Sections 2 and 3 continues to be applicable except that the part played there by 
the flagellum is here played by the helical cell body, while the complete ensemble of flagella 
fills the role there assigned to the cell body. With careful choice of notation to allow for this I 
use w for the angular velocity (27r times the frequency in Hz cited above) at which the rotary 
motors turn the flagella relative to the cell body, and f~ for those flagella's observed angular 
velocity in space. Then the difference 

wE = co - f~ (57) 

represents, of course, the cell body's angular velocity in the opposite sense - and the agreement 
between Eqs. (7) and (57) implies that much of the analysis of Section 2 can once again be 
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(a) (b) (c) (a) 

(e) ( f )  (g) 

Fig. 11. Sketches of some bacteria that achieve motility by the action of rotary motors on thin, relatively passive 
flagella. (i) Bacteria from the order Pseudomonadales: (a) Caulobacter, with just a single flagellum; (b) a typical 
Pseudomonas species, with flagella emerging from two polar regions; (c) Selenomonas, displaying just a single 
polar region; (d) Spirillum (see also Fig. 12) with two polar regions from which there emerge flagella relatively 
short compared with the long helical cell body. (ii) Bacteria of peritrichous type (with flagella emerging all round 
the cell body) from the order Eubacteriales: (e) Proteus mirabilis, (f) Bacillus megaterium, (g) Salmonella typhosa. 

used. Furthermore, if D is now defined as the rotational damping constant for the complete 
ensemble of flagella, rotating relative to the fluid at angular velocity f~, then a balance between 
the torque Dr2 resisting that rotation and the torque bhL in the opposite sense resisting the 
rotary movements of the cell body at effective angular velocity wE yields the same Eq. (46) as 
before with L as the cell body's length measured along the centreline. It is possible, therefore, 
to apply again all the results of Fig. 1 (where, however, the ratio A/a  = 25 appropriate to the 
Spirillum volutans cell body needs to be used in place of greater values typical of eukaryotic 
flagella), alongside Eq. (48) for the ratio of the cell-body rotation speed wE to the angular 
velocity w of the rotary motors. 

As usual with the methods of this paper, the zero-thrust swimming speed U0 derived in 
this way is slightly greater than the Ixue swimming speed U - which is determined by the fact 
that the corkscrew rotation of the cell body needs to generate sufficient thrust to overcome the 
aforementioned drag experienced by the ensemble of flagella. Here, therefore, I should recall 
the explanation (Section 1) of the simple way in which the difference U0 - U is calculated, 
from a balance between the value of this drag at forward velocity U and the drag that would 
oppose the cell body's drift backwards, relative to the zero-thrust speed U0, at velocity U0 - U. 
(It is only in my last type of helical propulsion, soon to be described, that the zero-thrust and 
true swimming speeds become identical). 

As regards the three-dimensional flow field around Spirillum volutans, its near field (close 
to the helical cell body) is expected to be much as shown in Figs. 3,4 and 5 (with allowance 
made for the reduced value of A/a); but, for reasons rehearsed already in Section 3, the far- 
field velocities must fall off at a vastly steeper rate. The cell body's finite length (L measured 
along the centreline, or ~ = a L  measured along the axis of the helix) causes the vortical far 



Helical distributions of  stokeslets 

I I I 
Uo ~ t I '- 

I I I 

[ I I  I I I  

63 

II  " " - 

I I I I I 

0.2 0.4 0.6 0.8 1.0 

R /, e 

Fig. 12. In Spirillum volutans the flagella attached (by hooks) at each end of the cell body all rotate in the same 
sense, and the helical cell body responds with a rotation resisted by an equal and opposite torque. The latter rotation 
generates a swimming velocity- to the left in the case illustrated- which in turn gives both cones of rotating flagella 
a sweptback appearance. Also, "far-field" values of azimuthal fluid velocities are shown as function of distance R 
from the axis, with the dotted line giving the vortical far field calculated (Figs. 4 and 5) for an unbounded helix 
while the solid lines allow both for the finite length of the helical cell body and for two rotlet fields (associated 
with flagellar rotations at both ends). 

field of  Fig. 5 to be replaced by a rotlet far field of  total strength bhL; however the rotlets 
of  combined strength bhL in the opposite sense (representing the effects of  flagella rotating 
at both ends of  the body) produce once again a progressive cancelling of that far field which 
becomes complete for _R/£ > 1. (The only difference from the situation depicted in Fig. 9 is 
that the concentrated rotlet at z = 0 is replaced by half-strength rotlets at z = 0 and :r = L 
The effect of  this, also shown in Fig. 12, is that the solid curve II remains unchanged, while 
both of  the solid curves I and III are replaced by their arithmetic mean.) 

Behaviour similar to that of  Spirillum is found also in a few other genera. Recently, 
widespread attention was focussed upon Helicobacterpylori, whose presence in human stom- 
achs has been convincingly linked [14] to pathological conditions including gastritis, peptic 
ulcer and stomach cancers. This too is a bacterium with a helical cell body and relatively short 
polar flagella. 
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Fig. 13. Dark-ground microphotograph (reproduced, with permission, from [14]) of some actively swimming 
spirochetes of the species Treponema pallidum. 

I now conclude my analyses of helical propulsion with an account of the most remarkable 
type of all; where, although the helical external surface of the swimming organism can be 
observed to be performing corkscrew rotations which must generate torque, nevertheless 
there are no visible counter-rotations of flagella or other appendages to provide any opposing 
torque. These simple facts had been known for many decades during which however yawning 
gaps in communication between microbiological specialists making observations on bacteria 
and physical scientists familiar with angular momentum principles had limited the degree 
of wonderment elicited by the findings. With the vigorous growth of biomechanics in the 
1960s, however, many scientists began to become aware of the enigma posed by established 
information on spirochete behaviour. 

Spirochetes differ so much from other bacteria that they are classified as a separate order 
Spirochaetales, comprising just three genera Treponema, Borrelia and Leptospira. Fig. 13 
shows the external appearance of Treponema pallidum, the agent of syphilis and yaws [ 14]; a 
similar exterior shape is common to other members of the order, including those responsible 
for half a dozen other serious diseases (e.g. Lyme disease). Every one of them swims by 
performing a corkscrew rotation about its longitudinal axis. 

Much careful observation had been needed to establish beyond a doubt the absence of 
motile external appendages already referred to. Actually, outside the spirochete's external 
surface, there exist thin fibrils (usually three of them) but they do not move at all, being 
wrapped tightly around that surface in such a way that its helical shape is maintained (see 
[24], p.753). The point here is that a spirochete possesses a helical cell body outside which 
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there is a helical sheath, and the fibrils are required to maintain the good match in shape 
between the sheath and the cell body proper. 

Just two flagella emerge, one from each end of the long helical cell body. However, they 
are situated entirely in the extremely narrow gap between that cell body and the external 
sheath. Accordingly, they are nowhere in contact with the ambient fluid - and so cannot be 
contributing any torque in opposition to that exerted on the ambient fluid by the organism's 
corkscrew rotation. 

The enigma could be posed in either of two ways, both related to this torque with which 
the rotating organism acts on the fluid (which, conversely, acts on the organism with an equal 
and opposite torque): 

(a) Steady rotation simply cannot be maintained against the opposing torque exerted by the 
fluid; moreover, 

(b) because the organism's inertia is practically negligible, its rotation speed must be reduced 
to zero by viscous resistance in a time (related to cross-sectional radius squared divided 
by kinematic viscosity) of less than a microsecond. 

Yet, even in the fact of these apparently insurmountable theoretical objections, the bacteria 
kept spinning along! 

Only after the establishment (around 1974) of the existence of rotary motors driving 
bacterial flagella [15] did it first become possible to find a convincing biomechanical resolution 
of the enigma [25,26]; indeed this can in retrospect be perceived as having been the only 
possible resolution obeying fundamental angular-momentum principles. Here, that successful 
resolution is summarised before I go on to consider its implications for the external flow 
field. 

The rotary motors cause each of the two flagella to turn in the same sense so that, at 
each cross-section (Fig. 14) within the above-mentioned narrow space between cell body 
and sheath, the flagella act as roller bearings that permit the sheath and the cell body to be 
in relative rotary motion. This is achieved by the sheath turning in one direction at rotation 
speed ws (the same all along the sheath) and the cell body turning in the opposite direction at 
rotation speed wB; where, if as is the internal radius of the sheath and aB the external radius 
of the cell body, then asws = aBWB (because both are equal to the circumferential velocity of 
the rotating flagella). To avoid misunderstanding I add that, although either of these rotation 
speeds (say ws) is uniform all along the cell body, nonetheless the corresponding angular 
velocity is a vector possessing uniform magnitude yet nonuniform direction - because its 
direction is always along the tangent to the sheath's centreline. 

This rotation of each cross-section of the sheath about that sheath's local centreline is often 
called "self-rotation". It is, of course, opposed at each cross-section by a resistive torque due 
to fluid viscosity, and the resultant of all those torques on different cross-sections is a net 
torque about the axis of the helical organism. This, perforce, causes the organism to turn about 
that axis at an angular velocity WE, such that there is a precise balance between the net torque 
resisting self-rotation and the opposite torque resisting corkscrew rotation. 

Clearly, the difficulties cited above as (a) and (b) now disappear, because the total torque 
acting between fluid and organism has become zero. Needless to say, there is viscous dissipa- 
tion of energy in the fluid motion; however, such energy loss is restored by energy input from 
the rotary motors. (It may be interesting here to make a comparison with Spirillum, in which 
flagellar rotation produced by these motors yields directly the necessary torque between fluid 
and organism; by contrast, flagellar rotation in spirochetes is an intermediary in producing that 
self-rotation of the external sheath which now becomes responsible for torque generation.) 
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% 
Fig. 14. Sketch, following Berg [26], of the cross-section of a spirochete's helical cell body and of its closely fitting 
external sheath, showing the "roller bearing" action of the rotating flagella between the sheath's inner surface and 
the cell body's outer surface. These rotate in opposite directions with rotation speeds ws and WB respectively. 

Because Stokes flows satisfy linear equations, the three-dimensional flow field associated 
with the combined self-rotation and corkscrew rotation of spirochetes is a linear combination of 
the flow field that would be associated with each separately. For corkscrew rotation at angular 
velocity WE, an unbounded-helix model of the associated flow field has been comprehensively 
analysed in Section 2. Before deriving the corresponding self-rotation model, I emphasize that 
the present problem is one where the whole is greater in value than the sum of its parts. This 
is because the two fields have equal and opposite axial torques per unit length; accordingly, 
their vortical far fields cancel and we shall see that the combined flow field is highly localised. 
This makes an unbounded-helix model rather specially appropriate for studying the three- 
dimensional flow field in the neighbourhood of a swimming spirochete. 

In order to model the flow field due to self-rotation, distributed rotlet fields are clearly 
needed. Eq. (52) described a concentrated rotlet field generated when a torque (Df~, 0, 0) in 
the z-direction is applied at the origin; evidently, its numerator is the vector product of that 
torque and the displacement (x, y, z) from its point of application. It follows that a flow which 
takes the form of distributed rotlet fields of strength 3(s)  per unit length along the helix (4) 
can be written in terms of the vector product J(s )  × r0 as 

OO 

f a(s) × r0 
87r#r° 3 ds; 

--OO 

(58) 

where, as in Section 2, the vector r0 represents displacement of a field point from the location 
(4) of the singularity. Here J (s), the torque exerted per unit length by self-rotation, is expected 
to be of uniform magnitude while at each point its direction is along the tangent to the helical 
centreline. 
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Amusingly, this vector J(s)  has properties (uniform magnitude and tangential direction) 
identical with those of a steady current in a wire, and the famous law of Biot and Savart tells 
us that expression (58) is proportional to that current's magnetic field. Yet, even though the 
magnetic field due to a current in a helical coil of wire has undoubtedly been computed many 
times, I found it convenient in pursuing my objective of superimposing results on those of 
Section 2 to compute directly the flow field (58). 

A specially striking feature of the Biot-Savart law is its declaration that the vector field 
(58) is necessarily irrotational. Thus, even though the flow field (52) of an individual rotlet, 
corresponding to the far field of a rotating body, has nonzero vorticity, nonetheless all vorticity 
cancels out in the distribution (58) of rotlet fields. 

In purely hydrodynamic terms (without bringing in electromagnetic doctrines) expression 
(58) can be recognized as the irrotational flow field induced by a (curved) line vortex of 
strength 

J 
- - 7  2# (59) 

where J is the uniform magnitude of the tangential vector J(s) ;  see also [27] for further 
analysis of this case. Of course, the real fluid flow does not extend to the singular location of 
the line vortex itself (the sheath's centreline) but just to a distance a from it, where a is the 
sheath's external radius. At that distance, the fluid rotates about a vortex of strength (59) with 
rotation speed 

d 
ws - 47r#a2, (60) 

which must evidently coincide with that of the sheath's external surface. (Although it is well 
known that a straight circular cylinder which rotates so as to exert a torque J on the fluid 
creates outside itself a vortical motion of strength (59), and also that viscous stresses in this 
irrotational flow transmit the same torque outwards across every distance R from the axis of 
the cylinder, nonetheless it appears quite interesting that an external irrotational motion can 
be generated even in the case of a self-rotating helical shape.) 

Now, in order to model flows around swimming spirochetes, it is necessary to combine the 
flow (12), generated by a corkscrew rotation (at angular velocity WE) that exerts on the fluid 
a net torque ( -bh)  about the z-axis, with a flow (58) due to self-rotation for which the net 
torque about the z-axis takes an equal and opposite value (+bh). Then the vector J(s)  is a 
multiple (bh/c~) of the unit tangent vector to the helix (4), giving 

J (s )  = __bh (~, - b k  sin ks, bkcos ks). (61) 
c~ 

Moreover the expression (58) for the self-rotation field, with Eq. (15) for the displacement r0 
of a field point from the helix, becomes 

87r#u b 
h = [-.Rbkcos(k  - + 

(62) 
-Rc~ sin ¢ + c~b(sin ks - ks cos ks) ,  Rc~ cos ¢ - ~b(cos ks + ks sin ks)] ds. 

which, after the substitutions (20) used for purposes of nondimensionalisation, takes the 
form 
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__fl 7 [32(1 - X cos(0 - ¢)), a3(sin 0 - 0cos0 - X sin ¢), a 3 ( X c o s ¢  - c o s 0  - 0sin0)] 
dO 

a J [a202 + 32(x  2 - 2 x  cos(0 - ¢) + 1)] 3/2 
m o o  

(63) 

Next, because of the need (as in Section 2) to apply the basic theorem of fiagellar hydrody- 
namics [5], I focus first on field points with ¢ = 0 which include the location X = 1, ¢ = 0 
of the helix itself. Here, because once again the integrand's denominator becomes an even 
function of 0, expression (63) can be simplified by combining values of the integrand for 0 
and - 0  to give 

47r#u- [~-~3 (1XB3-B4) O, fl2(B4q-½B3-B1)] -~ , , (64) 

where B1 (a, X) is defined in Eq. (22) and where 

o o  

{2(1 -cosO),  X - 1} 
{B3(°~'X)' B4(°~'X)} = f [0~202 +~-2~(2~ 2---X c----os0 ; 1)] 3/2d0" 

0 
(65) 

Now a simple asymptotic estimation shows that the pure vortical motion about the centre- 
line is represented entirely by the B4 integral, which has the limiting property 

1 . _ ½  
B4(ce, X) f l 2 ( X  - 1) a s X  ~ 1. (66) 

Thus the other terms in (64) represent distortions of the local motion associated with the 
curved shape of the line vortex. 

Out of these, it was shown in Section 2 that B1 (a, X) becomes logarithmically infinite as 
X ~ 1, but that the basic theorem of flagellar hydrodynamics relates the actual motion of 
the flagellar cross-section to a function A1 (oL) which Eq. (23) defines in terms of the integral 
for B1 (a, 1) over a range with the small interval 0 < 0 < e excluded. Now a function A3(a), 
plotted in Fig. 15, may be similarly defined so that 

o o  

f 2(1 - cos O) 
- In e + A3(o 0 = [ oz202 -F ~3~-] --~os0)] 3/2 dO, (67) 

where once again the integrand is asymptotic to 0-1 as 0 - ,  0. 
The existing form of the basic theorem of flagellar hydrodynamics [5] describes the motion 

of a local cross-section associated with a distribution of stokeslets along the centreline. The 
corresponding result for a distribution of rotlets is extremely similar (see Appendix) although 
it involves the addition of an extra term ½ (rather than either 1 or 0) wherever In e occurs; and, 
of course, it just describes elements of the local motion other than the cross-section's simple 
self-rotation about the centreline. 

Application of this result leads to equations, supplementary to Eqs. (26), for the helical- 
vortex contributions to the zero-thrust swimming velocity U0 and the angular velocity WE of 
corkscrew rotation. They are obtained from Eq. (64) by omitting the self-rotation terms so that 
B4, by Eq. (66), is replaced by - ½. Then the cross-sectional velocity (8) for 8 = 0 is equated 



. 

- 2 . -  

tK 

0:S o:6 

- 4 .  

- 6 .  

Helical distributions of stokeslets 69 

. 

' If:t> ' ' O.g 0 .4  0-2. 

2. 
O< 

Fig. 15. If a helical shape executes self-rotation, necessarily found alongside a corkscrew rotation resisted by an 
equal and opposite torque, their effects on the swimming velocity U0 are governed by Eqs. (68) and (26) with 
A3(c~) and A1 (c~) taking values plotted as functions of the axial direction cosine c~ in the upper diagram. These 
effects on U0 are of opposite sign: in the lower diagram the dotted curve shows the positive value of 47rlzUo/h 
given by (26) alone, while the solid line shows the combined value with the negative effect (68) of self-rotation 
added on. Although corkscrew rotation dominates for large c~, its influence on swimming velocity becomes almost 
negligible for values of c~ 2 around 0.1 as found (Fig. 13) in Treponema pallidum. (In computing these curves, a 
value A/a = 32 was used, corresponding to a = 0.1~n and to )~ = c~A = l~m as in Treponemapallidum.) 

to the results of  putting X = 1 in the other terms, with a substitution of  ( -  In e + A3 (c~) - 1) 
2 

for B3 and of  ( -  In e + A1 (c~) - l )  for B1. This leads to expressions 2 

47r#Uo/h = - ~  ( - l n e  + A3(~) + ½),  / 

47r#wEb/h = t2  [_  ln e + A1 (o~) - 1 ( _  ln c + A3(a)  - 1)] f (68) 

for those contributions, additional to Eqs. (26), which are induced by the helical vortex. 
The results of  adding Eqs. (26) and Eqs. (68) affect quite differently the swimming velocity 

U0 and the angular velocity WE of  corkscrew rotation. The latter is changed only moderately by 
the new contribution (68). By contrast, the corresponding contribution (68) to the swimming 
velocity U0 is of  an opposite (negative) sign, and also has the possibility of  being much larger 
in magnitude, particularly for relatively small a.  
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Fig. 15 shows as a function of a 2 the competing effects of self-rotation and of corkscrew 
rotation under conditions of zero net torque about the x-axis. These, of course, are the 
conditions which determine the self-rotation torque vector as in Eq. (61), including a factor 
a -1 in its y- and z-components; which, in turn, are the components that contribute to the x- 
component of cross-section velocity. Here is one reason why the self-rotation effects dominate 
the swimming velocity for small a. 

Yet another, more hydrodynamically fundamental reason is associated with the capacity of 
a helical line vortex to induce motions of itself parallel to its axis. Once again, it is particularly 
as a becomes smaller (when the helical vortex begins to share properties with a chain of 
vortex rings) that this self-induced motion is intensified - a trend which, mathematically, is 
expressed by A3(a) becoming quite large for small a (Fig. 15). 

Actually, Fig. 15 shows how corkscrew rotation effects are paramount for larger a 2 and 
self-rotation effects for small a 2. Around a 2 = 0.5 (the condition (27) that gives greatest 
efficiency to the swimming of eukaryotic microorganisms by helical undulation of flagella), 
the two effects cancel and it would hardly be possible for a spirochete to swim at all! Larger 
values of a 2 might produce a form of swimming dominated by the action of corkscrew 
rotation. On the other hand, a spirochete must gain very substantial benefits from self-induced 
motion effects if, as observed, a 2 is relatively small. In that condition corkscrew rotation is 
still present; however, the direction of swimming is the opposite of that expected from the 
action of such rotation by itself (in other words, swimming direction has contrary relationships 
to sense of corkscrew rotation in Spirillum and in spirochetes). Against this background it is 
interesting to note that the case a2 = 0.1, /32 = 0.9 corresponds to the ratio )~/b of pitch to 
radius for the helix taking a value 

A aA 27r o~ 27r 
- b - a ~ - ~ - = 2 7 r ~ -  3 - 2 " 1 '  (69) 

b 

which is close to that observed in microphotographs of swimming spirochetes such as 
Fig. 13. 

It is valuable next to probe the relationships between the swimming velocity U0 and the 
angular velocity ws of self-rotation of the sheath. (Here, the adjectival phrase "zero-thrust" 
can be omitted in describing this swimming velocity U0 because the helical shape comprises 
the entire organism so that there exists no possibility of an additional part of the organism 
being subjected to any drag which would need to be overcome by the helix exerting any 
thrust.) Now, by Eqs. (60) and (61), 

bh 
ws - 4re#a2 a, (70) 

and it follows from the first of Eqs. (68) that the swimming velocity U0 directly induced by 
self-rotation is in a ratio to the latter's circumferential velocity equal to 

awsU° a [~m~ (_lne+A3(~)+ ½)] (71) 

Numerically, this is greatest for a given ratio a/b of sheath radius to helix radius when the 
quantity in square brackets is greatest, which (see Fig. 15) requires o2" to be small. Moreover, 
these are conditions when U0 is rather little affected by the countervailing effect of corkscrew 
rotation. 
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Fig. 16. Illustrating axial fluid motions (:r-components of 4zr/zu/h) computed with cr 2 = 0.1 for the flow around 
a swimming spirochete in the plane x = 0 intersected by the helical centreline at the point y = b, z = 0. As in 
Fig. 3, the solid line gives values on the y-axis with X = y/b while the broken line gives values on the z-axis 
with X = z/b. Axial velocities between the two vertical broken lines are all positive, corresponding to a large 
positive flux through the coils of a swimming spirochete at a mean velocity exceeding the spirochete's own velocity 
(represented by the blob). 

5. Flow field around a swimming spirochete 

After the above synopsis of that basic biomechanics of spirochete locomotion which was 
first developed two decades ago [25], I proceed finally to a description of the associated 
three-dimensional flow field. This could be expected to be highly localised as a result of 
the cancellation of far fields associated with equal and opposite axial torques due to self- 
rotation and to corkscrew rotation; yet the sharp localisation actually found (with essentially, 
no penetration of the flow beyond a distance of twice the helix radius from its axis) is quite 
surprising, while indicating too that flow fields around real spirochetes of finite length may 
be rather well represented by the present model using an unbounded helix. The computations 
have been carried out for the value a 2 = 0.1 suggested by the above discussion - a value in 
sharp contrast to the case (27) used in Section 2 for the analysis of flow fields around flagella 
of eukaryotic microorganisms. As before, the three-dimensional flow field is computed on the 
plane x = 0; the flow field on any other plane x = constant being obtained from this by a 
simple rotary displacement. 

Fluid velocity components in the x-direction (parallel to the axis of the helix) are shown 
in Fig. 16. Here, just as in Fig. 3, the solid line gives the x-component of 47r#u/h on that 
axis z = 0 which passes through the location (0, b, 0) of the helix itself; this is the sum of 
contributions (for ¢ = 0, 7r) from the x-components of (21) and (64). The broken line, again 
as in Fig. 3, shows how the same quantity varies on the perpendicular axis y = 0; here, it is 
derived from the x-components of (19) and (63) for ¢ = +7r/2. Both distributions become 
negligible (as mentioned above)when I XI = R/b > 2. 
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Fig. 17. Illustrating fluid motions at right angles to the axis of the helix for a swimming spirochete• As in Fig. 4, the 
solid lines give computed components of 47r#u/h as follows: (a) its z-component on the y-axis (where however 
the y-component vanishes) with X = y/b, alongside (b) its y-component and (c) its z-component on the z-axis, 
both with X = z/b. All these "in-plane" velocity components in Fig. 17 share with the axial components in 
Fig. 16 the property that they become negligible for [ X 1> 2; that is, at distances from the axis exceeding twice 
the radius of the helix. In the case of curves (a) and (b) this property is in sharp contrast to the behaviour (given 
by the dotted lines, with their vortical far fields) associated with the effects of corkscrew rotation alone. When the 
opposing effects of self-rotation are added on (solid lines), such vortical far fields disappear. 

Actually, the distribution of axial velocity (unlike that of azimuthal velocity studied below) 
is in both cases found to be dominated by the self-rotation contributions (64) and (63); just as 
the swimming velocity U0 was found earlier to be dominated for a 2 = 0.1 by the self-rotation 
contribution (68). In Fig. 16, a blob at the location X = 1 of the helix itself indicates the 
organism's own axial velocity (where the negative value of U0 corresponds by (8) to a positive 
value for the x-components of u), and the solid line exhibits a vortical behaviour close to the 
helix centred upon this blob. 

Perhaps the most striking feature of Fig. 16 is that both curves display a large positive 
flow in the cylindrical region y2 + z 2 < b 2 interior to the helix (the region between the two 
vertical broken lines); it corresponds in the electromagnetic problem, of course, to the strong 
axial magnetic flux induced inside a coil of wire along which a current passes. This powerful 
interior flow through the coils of a swimming spirochete (at an average velocity exceeding 
that of the organism itself) may be a specially important conclusion of this paper. (Evidently, 
it is in sharp contrast with the absence of any mean axial flow for the case illustrated in Fig. 3.) 
But before commenting further on this conclusion I outline computational results for velocity 
components in a plane perpendicular to the axis of the helix. 

The solid lines (a), (b) and (c) in Fig. 17 (where, actually, the vertical scale is expanded 
twofold compared with that in Fig. 16) have meanings exactly as specified in Fig. 4. How- 
ever, in sharp contrast to Fig. 4, these distributions again exhibit rapidly decaying far fields, 
essentially negligible for IX] > 2. 

For example, curve (a) plots the z-component of 47r#u/h on the axis z = 0, while 
curve (b) plots its y-component on the axis y = 0; both, then, are distributions of azimuthal 
components of velocity. Yet both distributions have become highly localised, even though the 
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corresponding curves in Fig. 4 possess vortical far fields (as shown, too, by a replot of the 
same data in Fig. 5). 

In the case of these azimuthal components of velocity, a rather even balance exists between 
the contributions of corkscrew rotation (associated with a distribution of azimuthaUy directed 
stokeslets) and self-rotation (represented by rotlets). Indeed, dotted lines in Fig. 17 show the 
form of curves (a) and (b) associated with just a corkscrew rotation by itself. They are similar 
in character (though not identical, because computed for a 2 = 0.1 rather than a 2 = 0.5) to 
the analogous curves (a) and (b) in Fig. 4; and, in particular, they have substantial vortical far 
fields. It is only because the corresponding curves (a) and (b) due to self-rotation (generating 
equal and opposite axial torque) have equal and opposite far fields that the solid-line curves 
(a) and (b), representing the sum of both effects, lack any such far fields. (Incidentally, it may 
be noted that the solid line (a) exhibits near the helix X = 1 a vortical behaviour due to self 
rotation, centred upon a negative azimuthal motion associated with corkscrew rotation). 

Only curve (c), which shows how the z-component of 47r#u/h is distributed on the axis 
y --- 0, was found already in Fig. 4 to be highly localised. That distribution has in Fig. 17 
become even more localised; on the other hand, the computed contribution from corkscrew 
rotation to this curve (c) in Fig. 17 turns out to be relatively insignificant. In other words, 
curve (c) as shown is very close to the distribution associated with self-rotation alone, and it 
may be interesting to ask why this generates a substantial z-velocity on the axis y = 0. 

To answer this question it is necessary to recall that velocity distributions in any plane 
x~constant are obtained from those in the plane x = 0 by a simple rotary displacement 
through an angle kx/a.  (Eq. (1) for the helix itself shows first how s becomes x/a,  and 
then how the angle ¢ defined in Eq. (14) increases by kx/a.) It follows that x-derivatives of 
velocity components are ( - k / a )  times C-derivatives (axial and azimuthal gradients are in this 
constant ratio). Such considerations allow the characteristics of curve (c) for the z-component 
of 47rpu/h on y = 0 to be viewed primarily as consequences of the equation of continuity, 
relating the z-derivative of this z-component to minus the x-derivative of the x-component, 
and so to (+k/a) times its C-derivative. Broadly, this suggests that the right-hand half of 
curve (c), giving results for ¢ = 7r/2, should have positive or negative gradient according as 
the x-components of 47r#u/h shown in Fig. 16 exhibit and increase or decrease from ¢ = 0 
to ¢ = 7r/2, and this broad expectation is bome out in practice. 

For all the curves in Figs. 16 and 17, the steep rate of decline as x increases is associated with 
the axial wavenumber k/a  which has just been identified. Indeed, for this axial wavenumber, 
solutions of the Stokes equations without vortical far fields have asymptotic behaviours which 
include (alongside algebraic factors) an exponential factor 

e (-k/~)R = e (-~/~)x (because R = bX and fl = bk). (72) 

For a 2 --- 0.1 this is e -3X whereas for a 2 = 0.5 it is e-X;  a contrast which explains both the 
still greater localisation for curve (c) shown in Fig. 17 as against Fig. 4, and that found in the 
curves of Fig. 16 by comparison with those of Fig. 3. 

Nonetheless the most important feature of Fig. 16 (and one which also is in complete 
contrast to Fig. 3) is the large positive flux through the coils of a swimming spirochete. This 
strong interior jet-like flow (at an average velocity exceeding that of the organism itself) 
is potentially advantageous for the life-style of these bacteria. Thus, as a spirochete moves 
forwards, it is continuously exposed around the outside of the helix to new fluid approaching 
from in front, while at the same time a jet of fluid coming from behind passes through the 
interior of the helix. Both features should combine to bring a rather rapid flow of nutrients (as 
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well as of chemical signals) towards the spirochete's close proximity and so help to maintain 
its energetic swimming movements. 

6. Conclusions 

Helical distributions of stokeslets offer a useful approach towards modelling four types of 
zero-thrust swimming: 

(i) that associated with single-celled eukaryotic organisms (algae and protozoa) which utilise 
active sliding movements of internal tubules within the axoneme to generate helical 
undulations of a propulsive flagellum; 

(ii) that associated with the action of a rotary motor at the base of a thin corkscrew-like 
passive flagellum of a bacterium; 

(iii) that associated with a bacterial cell body of helical shape, which acquires a corkscrew 
rotation when bunches of relatively short flagella at both ends are set into rotary movement 
by such motors; and 

(iv) that associated with spirochete swimming, where just two flagella are caused by rotary 
motors to act as roller bearings between a helical cell body and an external sheath which 
they excite into self-rotation about its own (helically curved) axis. 

Only in case (iv) is the zero-thrust swimming speed Uo the same as the actual speed. In 
other cases [To is a little greater than the organism's true swimming speed U, which is modified 
by the need for helical movements to generate enough thrust to overcome the drag of either 
the cell body in cases (i) and (ii) or the spinning flagella in case (iii). The difference U0 - U 
is determined in such cases from a balance [1] between this drag, at speed U, and a thrust 
which essentially consists of hydrodynamic resistance to the helix's backward drift at velocity 
U0 - U relative to the zero-thrust motion. 

Helical undulation (see (i) above) minimises, for given U0, the flagellum's rate of working 
all along its length if a 2 = 0.5 (where a is the helix's axial direction cosine); but this advantage 
may be diminished by effects of the hydrodynamic torque which ipposes that undulation. By 
causing the whole organism to rotate at angular velocity f2, it reduces the effective rotation 
speed of the helix from w (the undulation's radian frequency) to a value WE = ~; -- f2, 
determined by a balance between torques opposing the cell body's and flagellum's rotation at 
speeds f~ and a;E. This reduction, producing a similar fall in U0, may however be eliminated 
where two flagella execute helical undulations in opposite senses. Moreover, it may be changed 
into actual increases in a;E and U0 in two groups of microorganisms: dinoflagellates, where 
a secondary flagellum beating in a groove exerts active torque in an opposite sense; and 
euglenids, where the cell body's rotation, transmitted around a 180 ° bend at the flagellum's 
base, gives the undulation an effective rotation speed WE = a: + f2. 

To a survey of these features previously described [ 1 ], the present paper adds an analysis of 
the flow field of that helical distribution of stokeslets which models zero-thrust swimming. In 
any plane perpendicular to the axis of the helix, motions parallel to that axis are found to have 
zero means; indeed, their azimuthal average is zero at each distance from the axis. In particular, 
fluid motion at speed U0 near the organism's surface is reciprocated by neighbouring equal and 
opposite motions of fluid (Fig. 3), a conclusion interpreted in Fig. 6 from the geometrical nature 
of stokeslet fields. Yet motions in the plane itself are far less localised, being dominated (Fig. 5) 
by the vortical far field associated with the axial torque acting on the fluid. Nevertheless, where 
this torque is counteracted by an equal and opposite torque due to cell-body rotation, with its 
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far field described by the rotlet singularity (curl of a stokeslet), the flow field of the organism 
as a whole falls off much more rapidly (Fig. 9). 

Fluid motions in case (ii) are extremely similar for those relatively few bacterial species 
that possess just a single helical flagellum, to which a rotary motor impacts an angular velocity 
~v relative to the cell body. This, as before, is given a rotation speed f2 in the opposite sense 
by the torque that resists flagellar movement. On the other hand, the far commoner case of 
a bacterium propelled by a bundle of rotating helical flagella is not well suited to accurate 
modelling by helical distributions of stokeslets. 

In case (iii), typified by Spirillum, such modelling comes back into its own. Using ~v again 
for the angular velocity of all of the flagella (in the same sense) relative to the cell body, but 
this time expressing their observed angular velocity in space as f2, we recognize the difference 
WE = ~v -- f~ as the rotation speed of  the cell body. This corkscrew rotation generates the 
zero-thrust swimming speed U0 while the relation of wE to ~ is determined by a balance 
between the torques opposing the rotations of the cell body and the flagella at speeds WE and 
~2. Then the helical distribution of stokeslets has the same flow field as before, except that 
aximuthal motions in the far field are modified this time by the fields of two rotlets, one at 
each end of the helix (Fig. 12). 

Finally, for spirochetes (see (iv) above), the "self-rotation" of the helical sheath, with each 
cross-section rotating about its own axis, can be modelled by a distribution of tangentially 
directed rotlets along that helically curved axis. The net axial torque which resists these 
movements causes the whole organism to undergo a rigid corkscrew rotation - represented 
in turn by a helical distribution of azimuthally directed stokeslets - in such a way that no net 
axial torque acts between the organism and the fluid. For such a combination the swimming 
velocity Uo incorporates oppositely directed contributions from self-rotation and corkscrew 
rotation (Fig. 15), but large swimming velocities emerge for small values of a 2, around the 
value a 2 = 0.1 observed (Fig. 13) for Treponema pallidum, when the self-rotation effect 
dominates all axial motions including the swimming velocity. 

By contrast, self-rotation and corkscrew rotation produce comparable effects on azimuthal 
motions, so that their vortical far fields cancel (Fig. 17). Indeed, analysis for a 2 = 0.1 shows 
the whole fluid motion around a spirochete to be confined to distances from the axis of less 
than twice the radius of the helix. This suggests that flow fields calculated for a distribution of 
such rotlets and stokeslets along an unbounded helix may model rather accurately the motion 
near a real spirochete of finite length. 

The most important conclusion from this model is that axial motions (Fig. 16), far from 
poseessing any zero mean across a plane perpendicular to the axis, are instead dominated 
by a powerful interior flow (at an average velocity exceeding U0) through the coils of the 
spirochete. Such jet-like interior motions are expected to be advantageous for the life-style of 
these bacteria. 

In this long paper, a unified approach to the study of many features of the hydrodynamics of 
microorganism locomotion has been fruitfully applied. The approach adopted, moreover, has 
been directly derived [5] from the great discoveries made in 1896 by H. A. Lorentz [28]. 

Appendix: a "rotlet analogue" of the basic theorem 

In this Appendix I briefly show how the quantities defined by Eq. (65) behave in the limit as 
X ~ 1. After the simple asymptotic property (66) has been derived for m4, a "rotlet analogue" 
of the basic theorem is used to identify the logarithmic limiting behaviour of/33. 
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The first derivation uses the idea that, when [ X - 1 [ is very small, the integral expression 
(65) for B4 is dominated by values of the integrand for small 0; say, with 0 < 0 < O where 
O is defined as [ X - 1 11/3. Indeed the rest of the range of integration (from O to e~) makes 
a contribution to B4 less in modulus than 

L ~ I  X - l I d 0 _  I X - l [  which 0 X 1 . . . . +  as (73) O~303 20~302 

But, for small enough 0, cos 0 can be replaced by 1 - 102 so that the integral from 0 to O 
is estimated as 

fo (X - 1)dO 
[(a 2 +/32X)02 + f l2 (X  - 1)213/2 

I 0 
_ _  ° 

fl2(X - 1) [(ol 2 + / 3 2 2 ) 0 2  + /32 (X -- 1)211/2, (74) 

where, in the square bracket, the term/~2(X - 1 )2 is very small compared with the O 2 term of 
order [ X - 1 [2/3. Therefore, since a 2 +/32 = 1, expression (74) for the limiting behaviour 
of B4 becomes 

1 [1 + fl2(X - 1) + O(1 X -  1 14/3)]-1/2; 
fl2(X 1) 

(75) 

where, incidentally, the O([ X - 1 [4/3) term incorporates too the error in replacing cos 0 by 
1 - ½02. From Eq. (75), the asymptotic property (66) follows immediately. 

A similar idea is used to investigate the relationship between B3 for small [ X - 1 [ and 
the quantity A3 defined in Eq. (67). The aim is to find a small quantity ( (which may depend 
on X) such that 

I - I n (  + A 3 ( a ) ] -  B3(a, X)  (76) 

tends to zero as X ~ 1. 
Now, in the integral expressions (67) and (65) defining the two terms in (76), the difference 

of integrands is 2(1 - cos 0) times 

[3202 + 2/32(1 - cos 0)] -3/2 - [0:202 + 2/32X(1 - cos O) +/32(X - 1)2]-3/2; (77) 

which, as X ---, 1, tends uniformly to zero in the range O < 0 because [ X - 1 [ is much 
smaller than 02. In the range 0 < 0 < O, moreover, cos 0 can be replaced by 1 - 102 in both 
integrands. It follows that, in the limit as X ~ 1, expression (76) becomes 

f o dO f0 ° 02dO 
0 [02 + f l 2 ( X  - -  1)213/2 

O O O 
= ln~- - sinh-l/3 [ X _ 1 [ + [O2 + /32(X - 1)211/2; <78) 

which, since O =1 X - 1 I 1/3 is large compared with/3 [ X - 1 1, can be rewritten as 

0 2 0  
l n ~ - - l n f l l X _  11 + 1 .  (79) 
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The aim of  having it tend to zero as X ~ 1 can be achieved, then, if 

1 
ff = ~e¢~ I X - 1 I .  (80) 

When this result (80) is applied on the surface of  the cross-section, with radius a, of  the 
helical sheath, the distance R = b X  from the axis of  the helix must be given a value such that 

R - b I= a so that 

1 1 k 1 
= ~ekb I X - 1  I= ~e  I R - b l = ~ e k a = k S e  l/2 = ee 1/2, (81) 

m terms of  e = k5 with ~ = 0.5e1/2a, as defined between Eqs. (22) and (23) in Section 2 
above. In order to specify motions of  the cross-section surface, then, it is necessary to replace 

B3 by 

1 
- l n ~  + A3 = - l n e  - ~ + A3; (82) 

which is precisely the conclusion stated (in turn) between Eqs. (67) and (68) in Section 4 
above. Moreover,  an exactly similar proof  leads to just such an expression (but now involving 
A1) for the value of  B1 on the surface. 
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